PETER ATKINS | JULIO DE PAULA | JAMES KEELER

Useful relations

At 298.15 K

$R T$	$2.4790 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$R T / F$	25.693 mV
$(R T / F) \ln 10$	59.160 mV	$k T / h c$	$207.225 \mathrm{~cm}^{-1}$
$k T$	25.693 meV	V_{m}^{\ominus}	2.4790×10^{-2}
			$\mathrm{~m}^{3} \mathrm{~mol}^{-1}$
			$24.790 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$

Selected units*

1 N	$1 \mathrm{~kg} \mathrm{~s}^{-2}$	1 J	$1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
1 Pa	$1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$	1 W	$1 \mathrm{Js}^{-1}$
1 V	$1 \mathrm{JC}^{-1}$	1 A	$1 \mathrm{Cs}^{-1}$
1 T	$1 \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$	1 P	$10^{-1} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$
1 S	$1 \Omega^{-1}=1 \mathrm{AV}^{-1}$		

* For multiples (milli, mega, etc), see the Resource section

Conversion factors

$$
\begin{aligned}
& \theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15^{*} \\
& 1 \mathrm{eV} \quad 1.602177 \times 10^{-19} \mathrm{~J} \quad 1 \mathrm{cal} \quad 4.184^{*} \mathrm{~J} \\
& 96.485 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& 8065.5 \mathrm{~cm}^{-1} \\
& 1 \text { atm } \quad 101.325^{*} \mathrm{kPa} \quad 1 \mathrm{~cm}^{-1} \quad 1.9864 \times 10^{-23} \mathrm{~J} \\
& 760^{*} \text { Torr } \\
& 1 \mathrm{D} \quad 3.33564 \times 10^{-30} \mathrm{Cm} \quad 1 \AA \quad 10^{-10} \mathrm{~m}^{*}
\end{aligned}
$$

* Exact value

Mathematical relations

$$
\pi=3.14159265359 \ldots \quad e=2.71828182846 \ldots
$$

Logarithms and exponentials

$$
\begin{array}{ll}
\ln x+\ln y+\ldots=\ln x y \ldots & \ln x-\ln y=\ln (x / y) \\
a \ln x=\ln x^{a} & \ln x=(\ln 10) \log x \\
& =(2.302585 \ldots) \log x \\
\mathrm{e}^{x} \mathrm{e}^{y} \mathrm{e}^{\mathrm{z}} \ldots=\mathrm{e}^{x+y+z+\ldots} & \mathrm{e}^{x} / \mathrm{e}^{y}=\mathrm{e}^{x-y} \\
\left(\mathrm{e}^{x}\right)^{a}=\mathrm{e}^{a x} & \mathrm{e}^{ \pm \mathrm{i} x}=\cos x \pm \mathrm{i} \sin x
\end{array}
$$

Series expansions

$\mathrm{e}^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$
$\frac{1}{1+x}=1-x+x^{2}-\quad \frac{1}{1-x}=1+x+x^{2}+\cdots$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots$

Derivatives; for Integrals, see the Resource section

$$
\begin{array}{ll}
\mathrm{d}(f+g)=\mathrm{d} f+\mathrm{d} g & \mathrm{~d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f \\
\mathrm{~d} \frac{f}{g}=\frac{1}{g} \mathrm{~d} f-\frac{f}{g^{2}} \mathrm{~d} g & \frac{\mathrm{~d} f}{\mathrm{~d} t}=\frac{\mathrm{d} f}{\mathrm{~d} g} \frac{\mathrm{~d} g}{\mathrm{~d} t} \text { for } f=f(g(t)) \\
\left(\frac{\partial y}{\partial x}\right)_{z}=1 /\left(\frac{\partial x}{\partial y}\right)_{z} & \left(\frac{\partial y}{\partial x}\right)_{z}\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}=-1 \\
\frac{\mathrm{~d} x^{n}}{\mathrm{~d} x}=n x^{n-1} & \frac{\mathrm{~d} \mathrm{e}^{a x}}{\mathrm{~d} x}=a \mathrm{e}^{a x} \\
\frac{\mathrm{~d} \ln (a x)}{\mathrm{d} x}=\frac{1}{x}
\end{array}
$$

$\mathrm{d} f=g(x, y) \mathrm{d} x+h(x, y) \mathrm{d} y$ is exact if $\left(\frac{\partial g}{\partial y}\right)_{x}=\left(\frac{\partial h}{\partial x}\right)_{y}$
Greek alphabet*

A, α alpha	I, l iota	P, ρ rho
B, β beta	K, κ kappa	Σ, σ sigma
Γ, γ gamma	Λ, λ lambda	T, τ tau
Δ, δ delta	$\mathrm{M}, \mu \mathrm{mu}$	$\mathrm{\Gamma}, \nu$ upsilon
E, ε epsilon	N, ν nu	Φ, ϕ phi
Z, ζ zeta	Ξ, ξ xi	X, χ chi
H, η eta	O, o omicron	Ψ, ψ psi
Θ, θ theta	Π, π pi	Ω, ω omega

* Oblique versions (α, β, \ldots) are used to denote physical observables.

FUNDAMENTAL CONSTANTS

Constant	Symbol	Value		
			Power of 10	Units
Speed of light	c	$2.99792458{ }^{*}$	10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
Elementary charge	e	1.602176634^{*}	10^{-19}	C
Planck's constant	h	6.62607015	10^{-34}	Js
	$\hbar=h / 2 \pi$	1.054571817	10^{-34}	Js
Boltzmann's constant	k	1.380649^{*}	10^{-23}	JK^{-1}
Avogadro's constant	$N_{\text {A }}$	6.02214076	10^{23}	mol^{-1}
Gas constant	$R=N_{\mathrm{A}} k$	8.314462		$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday's constant	$F=N_{A} e$	9.64853321	10^{4}	Cmol^{-1}
Mass				
Electron	$m_{\text {e }}$	9.10938370	10^{-31}	kg
Proton	m_{p}	1.672621924	10^{-27}	kg
Neutron	m_{n}	1.674927498	10^{-27}	kg
Atomic mass constant	m_{u}	1.660539067	10^{-27}	kg
Magnetic constant (vacuum permeability)	μ_{0}	1.256637062	10^{-6}	$\mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
Electric constant (vacuum permittivity)	$\varepsilon_{0}=1 / \mu_{0} c^{2}$	8.854187813	10^{-12}	$\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	1.112650056	10^{-10}	$\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Bohr magneton	$\mu_{\mathrm{B}}=e \hbar / 2 m_{\text {e }}$	9.27401008	10^{-24}	JT^{-1}
Nuclear magneton	$\mu_{\mathrm{N}}=e \hbar / 2 m_{\mathrm{p}}$	5.05078375	10^{-27}	JT^{-1}
Proton magnetic moment	μ_{p}	1.410606797	10^{-26}	JT^{-1}
g-Value of electron	$g_{\text {e }}$	2.002319304		
Magnetogyric ratio				
Electron	$\gamma_{\mathrm{e}}=g_{\mathrm{e}} e / 2 m_{\mathrm{e}}$	1.760859630	10^{11}	$\mathrm{T}^{-1} \mathrm{~s}^{-1}$
Proton	$\gamma_{\mathrm{p}}=2 \mu_{\mathrm{p}} / \hbar$	2.675221674	10^{8}	$\mathrm{T}^{-1} \mathrm{~s}^{-1}$
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / e^{2} m_{\mathrm{e}}$	5.291772109	10^{-11}	m
Rydberg constant	$\tilde{R}_{\infty}=m_{e} e^{4} / 8 h^{3} c \varepsilon_{0}^{2}$	1.097373157	10^{5}	cm^{-1}
	$h c \tilde{R}_{\infty} / e$	13.60569312		eV
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.2973525693	10^{-3}	
	α^{-1}	1.37035999908	10^{2}	
Stefan-Boltzmann constant	$\sigma=2 \pi^{5} k^{4} / 15 h^{3} c^{2}$	5.670374	10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
Standard acceleration of free fall	g	9.80665*		$\mathrm{m} \mathrm{s}^{-2}$
Gravitational constant	G	6.67430	10^{-11}	$\mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.

Atkins'
 PHYSICAL CHEMISTRY

Twelfth edition

Peter Atkins

Fellow of Lincoln College, University of Oxford, Oxford, UK

Julio de Paula

Professor of Chemistry,
Lewis \& Clark College,
Portland, Oregon, USA

James Keeler

Associate Professor of Chemistry,
University of Cambridge, and
Walters Fellow in Chemistry at Selwyn College,
Cambridge, UK
university press

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP,
 United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries
© Oxford University Press 2023
The moral rights of the author have been asserted
Eighth edition 2006
Ninth edition 2009
Tenth edition 2014
Eleventh edition 2018
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
 Data available
 Library of Congress Control Number: 2022935397

ISBN 978-0-19-884781-6
Printed in the UK by Bell \& Bain Ltd., Glasgow
Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

PREFACE

Our Physical Chemistry is continuously evolving in response to users' comments, our own imagination, and technical innovation. The text is mature, but it has been given a new vibrancy: it has become dynamic by the creation of an e-book version with the pedagogical features that you would expect. They include the ability to summon up living graphs, get mathematical assistance in an awkward derivation, find solutions to exercises, get feedback on a multiple-choice quiz, and have easy access to data and more detailed information about a variety of subjects. These innovations are not there simply because it is now possible to implement them: they are there to help students at every stage of their course.

The flexible, popular, and less daunting arrangement of the text into readily selectable and digestible Topics grouped together into conceptually related Focuses has been retained. There have been various modifications of emphasis to match the evolving subject and to clarify arguments either in the light of readers' comments or as a result of discussion among ourselves. We learn as we revise, and pass on that learning to our readers.

Our own teaching experience ceaselessly reminds us that mathematics is the most fearsome part of physical chemistry, and we likewise ceaselessly wrestle with finding ways to overcome that fear. First, there is encouragement to use mathematics, for it is the language of much of physical chemistry. The How is that done? sections are designed to show that if you want to make progress with a concept, typically making it precise and quantitative, then you have to deploy mathematics. Mathematics opens doors to progress. Then there is the fine-grained help with the manipulation of equations, with their detailed annotations to indicate the steps being taken.

Behind all that are The chemist's toolkits, which provide brief reminders of the underlying mathematical techniques. There is more behind them, for the collections of Toolkits available via the e-book take their content further and provide illustrations of how the material is used.

The text covers a very wide area and we have sought to add another dimension: depth. Material that we judge too detailed for the text itself but which provides this depth of treatment, or simply adds material of interest springing form the introductory material in the text, can now be found in enhanced A deeper look sections available via the e-book. These sections are there for students and instructors who wish to extend their knowledge and see the details of more advanced calculations.

The main text retains Examples (where we guide the reader through the process of answering a question) and Brief illustrations (which simply indicate the result of using an equation, giving a sense of how it and its units are used). In this edition a few Exercises are provided at the end of each major section in a Topic along with, in the e-book, a selection of multiple-choice questions. These questions give the student the opportunity to check their understanding, and, in the case of the e-book, receive immediate feedback on their answers. Straightforward Exercises and more demanding Problems appear at the end of each Focus, as in previous editions.

The text is living and evolving. As such, it depends very much on input from users throughout the world. We welcome your advice and comments.

USING THE BOOK

TO THE STUDENT

The twelfth edition of Atkins' Physical Chemistry has been developed in collaboration with current students of physical chemistry in order to meet your needs better than ever before. Our student reviewers have helped us to revise our writing style to retain clarity but match the way you read. We have also introduced a new opening section, Energy: A first look, which summarizes some key concepts that are used throughout the text and are best kept in mind right from the beginning. They are all revisited in greater detail later. The new edition also brings with it a hugely expanded range of digital resources, including living graphs, where you can explore the consequences of changing parameters, video interviews with practising scientists, video tutorials that help to bring key equations to life in each Focus, and a suite of self-check questions. These features are provided as part of an enhanced e-book, which is accessible by using the access code included in the book.

You will find that the e-book offers a rich, dynamic learning experience. The digital enhancements have been crafted to help your study and assess how well you have understood the material. For instance, it provides assessment materials that give you regular opportunities to test your understanding.

Innovative structure

Short, selectable Topics are grouped into overarching Focus sections. The former make the subject accessible; the latter provides its intellectual integrity. Each Topic opens with the questions that are commonly asked: why is this material important?, what should you look out for as a key idea?, and what do you need to know already?

Resource section

The Resource section at the end of the book includes a brief review of two mathematical tools that are used throughout the text: differentiation and integration, including a table of the integrals that are encountered in the text. There is a review of units, and how to use them, an extensive compilation of tables of physical and chemical data, and a set of character tables. Short extracts of most of these tables appear in the Topics themselves: they are there to give you an idea of the typical values of the physical quantities mentioned in the text.

FOCUS 5
SIMPLE MIXTURES

=n

- Vinconvimusuan
=nominnomion

"en=-"

$5 A$ The thermodynamic description of mixtures
Nownen
whender
58 The properties of solutions
Non-2-20

AVAILABLE IN THE E-BOOK

'Impact on...' sections
'Impact on' sections show how physical chemistry is applied in a variety of modern contexts. They showcase physical chemistry as an evolving subject.
Go to this location in the accompanying e-book to view a list of Impacts.
'A deeper look' sections
These sections take some of the material in the text further and are there if you want to extend your knowledge and see the details of some of the more advanced derivations.
Go to this location in the accompanying e-book to view a list of Deeper Looks.

TOPIC 2A Internal energy

- Why do you need to know this material?
The first Law of thermodynamics is the foundation of the
discussion of the role of energy in chemistry. Wherevere the
generation or use of energy in physical transformations or
themical reactions is of interest, lying in the background
> What is the key idea?
The total energy of an isolated system is constant.
> What do you need to know already?
This Topic makes use of the discussion of the properties of
gases (Topic 1 A), particularly the perfect gas law. It builds
on the definition of work given in Energy: A first look.

A closed system has a boundary through which matter
cannot be transferred.
Both open and closed systems can exchange energy with their
surroundings.
An isolated system can exchange neither energy nor
matter with its surroundings.
2A.1 Work, heat, and energy
Although thermodynamics deals with the properties of bulk systemss, it is enriched by understanding the molecular origins
of these properties. What follows are descriptions of work, heat, of these properties. What follows are
and energy from both points of view.

Contents

PART 1 Mathematical resources

1.1 Integration
1.2 Differentiation878
1.3 Series expansions 881

Checklist of concepts

A checklist of key concepts is provided at the end of each Topic, so that you can tick off the ones you have mastered.

Physical chemistry: people and perspectives

Leading figures in a varity of fields share their unique and varied experiences and careers, and talk about the challenges they faced and their achievements to give you a sense of where the study of physical chemistry can lead.

PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from reasonable assumptions and the details of the steps involved. This is one role for the How is that done? sections. Each one leads from an issue that arises in the text, develops the necessary equations, and arrives at a conclusion. These sections maintain the separation of the equation and its derivation so that you can find them easily for review, but at the same time emphasize that mathematics is an essential feature of physical chemistry.

The chemist's toolkits

The chemist's toolkits are reminders of the key mathematical, physical, and chemical concepts that you need to understand in order to follow the text. Many of these Toolkits are relevant to more than one Topic, and you can view a compilation of them, with enhancements in the form of more information and brief illustrations, in this section of the accompanying e-book.

Annotated equations and equation labels

We have annotated many equations to help you follow how they are developed. An annotation can help you travel across the equals sign: it is a reminder of the substitution used, an approximation made, the terms that have been assumed constant, an integral used, and so on. An annotation can also be a reminder of the significance of an individual term in an expression. We sometimes collect into a small box a collection of numbers or symbols to show how they carry from one line to the next. Many of the equations are labelled to highlight their significance.

Checklist of concepts

1. Work is the process of achieving motion against an opposing force.
2. Energy is the capacity to do work.
3. Heat is the process of transferring energy as a result of

Physical Chemistry: People and Perspectives

Interview with Sean M. Decatur

 President of Kenyon College
How is that done? 2B. 1
 Deriving the relation between enthalpy change and heat transfer at constant pressure

In a typical thermodynamic derivation, as here, a common way to proceed is to introduce successive definitions of the quantities of interest and then apply the appropriate constraints.

Step 1 Write an expression for $H+\mathrm{d} H$ in terms of the definition of H
For a general infinitesimal change in the state of the system, U changes to $U+\mathrm{d} U, p$ changes to $p+\mathrm{d} p$, and V changes to

The chemist's toolkit 7B. 1
 Complex numbers

A complex number z has the form $z=x+\mathrm{i} y$, where $\mathrm{i}=\sqrt{-1}$. The complex conjugate of a complex number z is $z^{*}=x-\mathrm{i} y$. Complex numbers combine together according to the following rules:
Addition and subtraction:

$$
(a+\mathrm{i} b)+(c+\mathrm{i} d)=(a+c)+\mathrm{i}(b+d)
$$

Checklists of equations

A handy checklist at the end of each topic summarizes the most important equations and the conditions under which they apply. Don't think, however, that you have to memorize every equation in these checklists: they are collected there for ready reference.

Video tutorials on key equations

Video tutorials to accompany each Focus dig deeper into some of the key equations used throughout that Focus, emphasizing the significance of an equation, and highlighting connections with material elsewhere in the book.

Living graphs

The educational value of many graphs can be heightened by seeing-in a very direct way-how relevant parameters, such as temperature or pressure, affect the plot. You can now interact with key graphs throughout the text in order to explore how they respond as the parameters are changed. These graphs are clearly flagged throughout the book, and you can find links to the dynamic versions in the corresponding location in the e-book.

Checklist of equations

Property	Equation
Enthalpy	$H=U+p V$
Heat transfer at constant pressure	$\mathrm{d} H=\mathrm{d} q_{p}, \Delta H=q_{p}$

C) OXFORD

Focus 2
The First Law of thermodynamics

Brief illustration 2B. 2

In the reaction $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), 4 \mathrm{~mol}$ of gasphase molecules is replaced by 2 mol of gas-phase molecules, so $\Delta n_{\mathrm{g}}=-2 \mathrm{~mol}$. Therefore, at 298 K , when $R T=2.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the molar enthalpy and molar internal energy changes taking place in the system are related by

Example 2B. 2 Evaluating an increase in enthalpy with

 temperatureWhat is the change in molar enthalpy of N_{2} when it is heated from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$? Use the heat capacity information in Table 2B.1.

Collect your thoughts The heat capacity of N_{2} changes with temperature significantly in this range, so use eqn 2B.9.
The solution Using $a=28.58 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, b=3.77 \times 10^{-3} \mathrm{JK}^{-2} \mathrm{~mol}^{-1}$,

Self-check questions

This edition introduces self-check questions throughout the text, which can be found at the end of most sections in the e-book. They test your comprehension of the concepts discussed in each section, and provide instant feedback to help you monitor your progress and reinforce your learning. Some of the questions are multiple choice; for them the 'wrong' answers are not simply random numbers but the result of errors that, in our experience, students often make. The feedback from the multiple choice questions not only explains the correct method, but also points out the mistakes that led to the incorrect answer. By working through the multiple-choice questions you will be well prepared to tackle more challenging exercises and problems.

Discussion questions

Discussion questions appear at the end of each Focus, and are organized by Topic. They are designed to encourage you to reflect on the material you have just read, to review the key concepts, and sometimes to think about its implications and limitations.

Exercises and problems

Exercises are provided throughout the main text and, along with Problems, at the end of every Focus. They are all organised by Topic. Exercises are designed as relatively straightforward numerical tests; the Problems are more challenging and typically involve constructing a more detailed answer. For this new edition, detailed solutions are provided in the e-book in the same location as they appear in print.

For the Examples and Problems at the end of each Focus detailed solutions to the odd-numbered questions are provided in the e-book; solutions to the even-numbered questions are available only to lecturers.

Integrated activities

At the end of every Focus you will find questions that span several Topics. They are designed to help you use your knowledge creatively in a variety of ways.

FOCUS 1 The properties of gases

To test your understanding of this material, work through the Exercises, Additional exercises, Discussion questions, and Problems found throughout this Focus.

Selected solutions can be found at the end of this Focus in he e-book. Solutions to even-numbered questions are available online only to lecturers.

TOPIC 1A The perfect gas
Discussion questions
DAA. 1 Explain how the perfect gas equation of state arises by comber
1A.2 Explain the term 'partial pressure' and explain why Daltons' law is a

Additional exercises
E1A.8. Express (i) 22.5 kPa in atmospheres and (ii) 770 Torr in pascals.
 of 2.0 bar at
it exert?
EIA. 10 A perfect gas undergees isothermal expansion, which increases its volume by $2.20 \mathrm{dm}^{3}$. The final pressure and volume of the gas are 5.04 bar and $4.65 \mathrm{dm}^{3}$, respectively . Calculate the original pressure of the gas
(i) bar, (i) atm. (i) bar, ili) atm
$E 1.11 \mathrm{~A}$ perfect gas undergoes isothermal compression, which reduces its
volume by 1.80 d m . The final pressure and volume of the gas are 1.97 bar Volume bi. 1.0 dm . The final pressure and volume of the gas are 1.97 bar
nd 2.14 dm , respectively. Calculate the original pressure of the gas in (i) bar, (ii) torr:
 (1.00 atm $=14.7 \mathrm{lbin}{ }^{-4}$) on a winters day when the temperature was $-5^{\circ} \mathrm{C}$.
What pressure will be found, assuming no leaks have ocurred and that the volume is onstant, on a subsequent summer's day when the temperature
$35^{\circ} \mathrm{C}$? What complications should be taken into account in practice? EA. 13 A sample of hydrogen gas was found to have a pressure of 125 kP EAA .13 A sample of hydrogen gas was found to have a pressure of 125 kPa
when kP temperature was 23 C . C . What can its pressure be expected to be When the temperature was 22° C. What can its pressure be expected to be
when the temperature is $11^{\circ} \mathrm{C}$? E1A. 14 A sample of 255 mg of neon occupies $3.00 \mathrm{dm}^{3}$ at 122 K . Use the
perfect gas 1 law to calculate the pressure of the gas. perfect gas law to calculate the pressure of the gas. EIA. 15 A homeowner uses $4.00 \times 10^{3} \mathrm{~m}^{3}$ 'of natural gas in ayear to heat a
home. Assume that natural gas s sall methane, CH ${ }^{\prime}$ and that methane is a perfect gas for the conditions of his problem, which are 1.00 atm and $20^{\circ} \mathrm{C}$. What is he mass of gas used?
 $0.638 \mathrm{kgm}^{-3}$. What is the molecular formula of phosphorus under these
onditions?
$E 1.1 .17$ Calculate the mass of water vapour present in a room of volum
$400 \mathrm{~m}{ }^{\mathrm{m}}$ that contains air at $22^{\circ} \mathrm{C}$ on a day when the relative humidity

Problems
P1A. 1 A manometer consists of a U-shaped tube containing a liquid. One side comnected to the apparatus and the other is open to the atmosphere. The
pressure p inside the apparatus is given $p=p_{\alpha}+p g h$, where p_{α} is the external 60 per cent. tint: Relative humidity is the prevailing partial pressure of water
apour expressed as a percentage of the vapour pressure of water vapour at vapour expressed as a percentage of the vapour
hhe same temperature (in this case, 35.6 mbar).
E1A. 18 Calculate the mass of water vapour present in a room of volume $250 \mathrm{~m}^{3}$ that contains air at $23^{\circ} \mathrm{C}$ on a day when the relative humidity ${ }_{5}$ is
53 per cent (in this case, 28.1 mbar). 53 per cent (in this case, 28.1 mbar).
14.19 Given that the emass density of air at 0.987 bar and $27^{\circ} \mathrm{C}$ is
$1.146 \mathrm{kgm}^{3}$, calculate the mole fraction $1.146 \mathrm{kgm}^{3}$, calculate the mole fraction and partial pressure of nitrogen
and oxyen assuming that (i) air consists only of these two gases, (ii) air also ontains 1.0 mole per cent $A r$. 51.20 A gas mixture consists of 320 mg of methane, 175 mg of argon, and
225 mg of neon. The partial pressure of neon at 30 K is 8.87 kPa . Calcultet 225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPP . Calcula
(i) the volume and (ii) the total pressure of the mixture. 1A.21 The mass density of a gaseous compound was found E1A.2. The mass densty of a gaseous compound was found to be $1.23 \mathrm{kgm}^{3}$
at 330 K and 20 kPa . What is he molar mass of the compound? $E 1.22$ In an experiment to measure the molar mass of a gas. $250 \mathrm{~cm}^{3}$ of the
gas was confined in a ghass vessel The pressure was 152 Torr 2298 K , and
 after correcting for buyyancy effects, the mass of the gas was 33.5 mg . Wha
the molar mass of the gas?
E1A. 23 The densities of air at
 that air obeys Charless law, determine a value for the absolute eero of
temperature in degress Celsius. emperature in degrees Celsisus.

 From these data a olone (without making sse of the perfect gas law), determine
the absolute cero of temperature in degrees Celsius.
 at 273.15 K . Calculate (i) the mole fractions of each component, (ii) their partial pressures, and (iii) their total pressure.
ressure, p is the mass density of the liquid in the tube, $g=9.806 \mathrm{~m}^{2}$ is the

FOCUS 4 Physical transformations of pure substances
Integrated activities

 ${ }^{14,2^{2} \mathrm{I} \text { In an investigation of thermophysical properties of methylbenzene }}$ R.D. Goodwin U I. Phys. Chem. Ref. Datat 18, 1565 (1989)) presented solid-liquid curre is given by
$p /$ bar $=p_{s} /$ bar $+1000(5.60+11.727 x) x$
where $x=T / T_{,}-1$ and the triple point presure and temperature are
$p=0.4362$ U $p_{s}=0.4362 \mu$ bar and $T_{3}=178.15 \mathrm{~K}$. The liquid-vapour curve is given by
$\ln (p /$ bar $)=-10.418$) $21.137-15.958,14.01)^{2}$
 $1^{1,44^{4}}$ A substance as well-known as methane still receives research attention
because it is in important component of natural gas, a a becauseit is an important component of natural gas, a commonly used fossil
fuel. Priend d tal have published a review of thermophysical properties of
 583 (1989)), which included the following vapour pressure data describing the
liquid-vapour coexistence curve. $\begin{array}{llllllllllllll}T / K & 100 & 108 & 110 & 112 & 114 & 120 & 130 & 140 & 150 & 160 & 170 & 190 \\ p / M P a \\ p & 0.034 \\ 0.074 & 0.088 \\ 0\end{array}$ (a) Plot the liquid-vapour coexistence curve. (b) Estimate the standard
boiling point of methane. (c) Compute the standard enthalpy of vapori

TAKING YOUR LEARNING FURTHER

'Impact' sections

'Impact' sections show you how physical chemistry is applied in a variety of modern contexts. They showcase physical chemistry as an evolving subject. These sections are listed at the beginning of the text, and are referred to at appropriate places elsewhere. You can find a compilation of 'Impact' sections at the end of the e-book.

A deeper look

These sections take some of the material in the text further. Read them if you want to extend your knowledge and see the

TO THE INSTRUCTOR

We have designed the text to give you maximum flexibility in the selection and sequence of Topics, while the grouping of Topics into Focuses helps to maintain the unity of the subject. Additional resources are:

Figures and tables from the book

Lecturers can find the artwork and tables from the book in ready-to-download format. They may be used for lectures without charge (but not for commercial purposes without specific permission).
details of some of the more advanced derivations. They are listed at the beginning of the text and are referred to where they are relevant. You can find a compilation of Deeper Looks at the end of the e-book.

Group theory tables

If you need character tables, you can find them at the end of the Resource section.

Key equations

Supplied in Word format so you can download and edit them.

Solutions to exercises, problems, and integrated activities

For the discussion questions, examples, problems, and integrated activities detailed solutions to the even-numbered questions are available to lecturers online, so they can be set as homework or used as discussion points in class.

Lecturer resources are available only to registered adopters of the textbook. To register, simply visit www.oup.com/he/ pchem12e and follow the appropriate links.

ABOUT THE AUTHORS

Photograph by Natasha Ellis-Knight.

Julio de Paula is Professor of Chemistry at Lewis \& Clark College. A native of Brazil, he received a B.A. degree in chemistry from Rutgers, The State University of New Jersey, and a Ph.D. in biophysical chemistry from Yale University. His research activities encompass the areas of molecular spectroscopy, photochemistry, and nanoscience. He has taught courses in general chemistry, physical chemistry, biochemistry, inorganic chemistry, instrumental analysis, environmental chemistry, and writing. Among his professional honours are a Christian and Mary Lindback Award for Distinguished Teaching, a Henry Dreyfus Teacher-Scholar Award, and a STAR Award from the Research Corporation for Science Advancement.

James Keeler is Associate Professor of Chemistry, University of Cambridge, and Walters Fellow in Chemistry at Selwyn College. He received his first degree and doctorate from the University of Oxford, specializing in nuclear magnetic resonance spectroscopy. He is presently Head of Department, and before that was Director of Teaching in the department and also Senior Tutor at Selwyn College.

ACKNOWLEDGEMENTS

A book as extensive as this could not have been written without significant input from many individuals. We would like to thank the hundreds of instructors and students who contributed to this and the previous eleven editions:

Scott Anderson, University of Utah
Milan Antonijevic, University of Greenwich
Elena Besley, University of Greenwich
Merete Bilde, Aarhus University
Matthew Blunt, University College London
Simon Bott, Swansea University
Klaus Braagaard Møller, Technical University of Denmark
Wesley Browne, University of Groningen
Sean Decatur, Kenyon College
Anthony Harriman, Newcastle University
Rigoberto Hernandez, Johns Hopkins University
J. Grant Hill, University of Sheffield

Kayla Keller, Kentucky Wesleyan College
Kathleen Knierim, University of Louisiana Lafayette
Tim Kowalczyk, Western Washington University
Kristin Dawn Krantzman, College of Charleston
Hai Lin, University of Colorado Denver
Mikko Linnolahti, University of Eastern Finland
Mike Lyons, Trinity College Dublin
Jason McAfee, University of North Texas
Joseph McDouall, University of Manchester
Hugo Meekes, Radboud University
Gareth Morris, University of Manchester
David Rowley, University College London
Nessima Salhi, Uppsala University
Andy S. Sardjan, University of Groningen
Trevor Sears, Stony Brook University
Gemma Shearman, Kingston University
John Slattery, University of York
Catherine Southern, DePaul University
Michael Staniforth, University of Warwick
Stefan Stoll, University of Washington
Mahamud Subir, Ball State University
Enrico Tapavicza, CSU Long Beach
Jeroen van Duifneveldt, University of Bristol
Darren Walsh, University of Nottingham
Graeme Watson, Trinity College Dublin
Darren L. Williams, Sam Houston State University
Elisabeth R. Young, Lehigh University
Our special thanks also go to the many student reviewers who helped to shape this twelfth edition:

Katherine Ailles, University of York
Mohammad Usman Ali, University of Manchester

Rosalind Baverstock, Durham University
Grace Butler, Trinity College Dublin
Kaylyn Cater, Cardiff University
Ruth Comerford, University College Dublin
Orlagh Fraser, University of Aberdeen
Dexin Gao, University College London
Suruthi Gnanenthiran, University of Bath
Milena Gonakova, University of the West of England Bristol
Joseph Ingle, University of Lincoln
Jeremy Lee, University of Durham
Luize Luse, Heriot-Watt University
Zoe Macpherson, University of Strathclyde
Sukhbir Mann, University College London
Declan Meehan, Trinity College Dublin
Eva Pogacar, Heriot-Watt University
Pawel Pokorski, Heriot-Watt University
Fintan Reid, University of Strathclyde
Gabrielle Rennie, University of Strathclyde
Annabel Savage, Manchester Metropolitan University
Sophie Shearlaw, University of Strathclyde
Yutong Shen, University College London
Saleh Soomro, University College London
Matthew Tully, Bangor University
Richard Vesely, University of Cambridge
Phoebe Williams, Nottingham Trent University
We would also like to thank Michael Clugston for proofreading the entire book, and Peter Bolgar, Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, and Stephanie Smith who all worked alongside James Keeler in the writing of the solutions to the exercises and problems. The multiple-choice questions were developed in large part by Dr Stephanie Smith (Yusuf Hamied Department of Chemistry and Pembroke College, University of Cambridge). These questions and further exercises were integrated into the text by Chloe Balhatchet (Yusuf Hamied Department of Chemistry and Selwyn College, University of Cambridge), who also worked on the living graphs. The solutions to the exercises and problems are taken from the solutions manual for the eleventh edition prepared by Peter Bolgar, Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie Smith, and James Keeler, with additional contributions from Chloe Balhatchet.

Last, but by no means least, we acknowledge our two commissioning editors, Jonathan Crowe of Oxford University Press and Jason Noe of OUP USA, and their teams for their assistance, advice, encouragement, and patience. We owe special thanks to Katy Underhill, Maria Bajo Gutiérrez, and Keith Faivre from OUP, who skillfully shepherded this complex project to completion.

BRIEF CONTENTS

ENERGY A First Look
FOCUS 1 The properties of gasesFOCUS 2 The First Law33
FOCUS 3 The Second and Third Laws75
FOCUS 4 Physical transformations of pure substances 119
FOCUS 5 Simple mixtures 141
FOCUS 6 Chemical equilibrium 205
FOCUS 7 Quantum theory 237
FOCUS 8 Atomic structure and spectra 305
FOCUS 9 Molecular structure 343
FOCUS 10 Molecular symmetry 397
FOCUS 11 Molecular spectroscopy 427
xxxiii FOCUS 12 Magnetic resonance 499
FOCUS 13 Statistical thermodynamics 543
FOCUS 14 Molecular interactions 597
FOCUS 15 Solids 655
FOCUS 16 Molecules in motion 707
FOCUS 17 Chemical kinetics 737
FOCUS 18 Reaction dynamics 793
FOCUS 19 Processes at solid surfaces 835
Resource section
1 Mathematical resources 878
2 Quantities and units 882
3 Data 884
4 Character tables 910
Index 915

FULL CONTENTS

Conventions
Physical chemistry: people and perspectives
List of tables
List of The chemist's toolkitsXXX
List of material provided as A deeper look xxxi
List of Impacts xxxii
ENERGY A First Look xxxiii
FOCUS 1 The properties of gases 3
TOPIC 1A The perfect gas 4
1A. 1 Variables of state 4
(a) Pressure and volume 4
(b) Temperature 5
(c) Amount 5
(d) Intensive and extensive properties 5
1A. 2 Equations of state 6
(a) The empirical basis of the perfect gas law 6
(b) The value of the gas constant 8c) Mixtures of gases
Checklist of concepts 10
Checklist of equations 10
TOPIC 1B The kinetic model 11
1B. 1 The model 11
(a) Pressure and molecular speeds 11
(b) The Maxwell-Boltzmann distribution of speeds 12
(c) Mean values 14
1B. 2 Collisions 16
(a) The collision frequency 16
(b) The mean free path 16
Checklist of concepts 17
Checklist of equations 17
TOPIC 1C Real gases 18
1C. 1 Deviations from perfect behaviour 18
(a) The compression factor 19
(b) Virial coefficients 20
(c) Critical constants 21
1C. 2 The van der Waals equation 22
(a) Formulation of the equation 22
(b) The features of the equation 23
(c) The principle of corresponding states 24
Checklist of concepts 26
Checklist of equations 26
FOCUS 2 The First Law 33
TOPIC 2A Internal energy 34
2A. 1 Work, heat, and energy 34
(a) Definitions 34
(b) The molecular interpretation of heat and work 35
2A. 2 The definition of internal energy 36
(a) Molecular interpretation of internal energy 36
(b) The formulation of the First Law 37
2A. 3 Expansion work 37
(a) The general expression for work 37
(b) Expansion against constant pressure 38
(c) Reversible expansion 39
(d) Isothermal reversible expansion of a perfect gas 39
2A. 4 Heat transactions 40
(a) Calorimetry 40
(b) Heat capacity 41
Checklist of concepts 43
Checklist of equations 44
TOPIC 2B Enthalpy 45
2B. 1 The definition of enthalpy 45
(a) Enthalpy change and heat transfer 45
(b) Calorimetry 46
2B. 2 The variation of enthalpy with temperature 47
(a) Heat capacity at constant pressure 47
(b) The relation between heat capacities 49
Checklist of concepts 49
Checklist of equations 49
TOPIC 2C Thermochemistry 50
2C. 1 Standard enthalpy changes 50
(a) Enthalpies of physical change 50
(b) Enthalpies of chemical change 51
(c) Hess's law 52
2C. 2 Standard enthalpies of formation 53
2C.3 The temperature dependence of reaction enthalpies 54
2C. 4 Experimental techniques 55
(a) Differential scanning calorimetry 55
(b) Isothermal titration calorimetry 56
Checklist of concepts 56
Checklist of equations 57
TOPIC 2D State functions and exact differentials 58
2D. 1 Exact and inexact differentials 58
2D. 2 Changes in internal energy 59
(a) General considerations 59
(b) Changes in internal energy at constant pressure 60
2D. 3 Changes in enthalpy62
2D. 4 The Joule-Thomson effect 63
Checklist of concepts 64Checklist of equations65
TOPIC 2E Adiabatic changes 66
2E. 1 The change in temperature 66
2E. 2 The change in pressure 67
Checklist of concepts 68
Checklist of equations 68
FOCUS 3 The Second and Third Laws 75
TOPIC 3A Entropy76
3A. 1 The Second Law 76
3A. 2 The definition of entropy 78
(a) The thermodynamic definition of entropy 78
(b) The statistical definition of entropy 79
3A. 3 The entropy as a state function(a) The Carnot cycle80
(b) The thermodynamic temperature81
(c) The Clausius inequality 84Checklist of equations
Checklist of concepts 8585
TOPIC 3B Entropy changes accompanying specific processes 86
3B. 1 Expansion 86
3B. 2 Phase transitions 87
3B. 3 Heating
3B. 4 Composite processes
Checklist of concepts
Checklist of equations
TOPIC 3C The measurement of entropy 91
3C. 1 The calorimetric measurement of entropy 91
3C. 2 The Third Law(a) The Nernst heat theorem(b) Third-Law entropies(c) The temperature dependence of reaction entropy
Checklist of concepts
Checklist of equations
TOPIC 3D Concentrating on the system 96
3D. 1 The Helmholtz and Gibbs energies 96
(a) Criteria of spontaneity 96
(b) Some remarks on the Helmholtz energy 97
(c) Maximum work 97
(d) Some remarks on the Gibbs energy 99
(e) Maximum non-expansion work 99
3D. 2 Standard molar Gibbs energies 100
(a) Gibbs energies of formation 100
(b) The Born equation101
Checklist of concepts 102
Checklist of equations 103
TOPIC 3E Combining the First and Second Laws 104
3E. 1 Properties of the internal energy 104
(a) The Maxwell relations 105
(b) The variation of internal energy with volume 106
3E. 2 Properties of the Gibbs energy 107
(a) General considerations 107
(b) The variation of the Gibbs energy with temperature 108
(c) The variation of the Gibbs energy of condensed phases with pressure 109
(d) The variation of the Gibbs energy of gases with pressure 109
Checklist of concepts 110
Checklist of equations 111
FOCUS 4 Physical transformations of pure substances 119
TOPIC 4A Phase diagrams of pure substances 120
4A. 1 The stabilities of phases 120
(a) The number of phases 120
(b) Phase transitions 121
(c) Thermodynamic criteria of phase stability 121
4A. 2 Coexistence curves 122
(a) Characteristic properties related to phase transitions 122
(b) The phase rule 123
4A.3 Three representative phase diagrams 125
(a) Carbon dioxide 125
(b) Water 125
(c) Helium 126
Checklist of concepts 127
Checklist of equations 127
TOPIC 4B Thermodynamic aspects of phase transitions 128
4B. 1 The dependence of stability on the conditions 128
(a) The temperature dependence of phase stability 128
(b) The response of melting to applied pressure 129
(c) The vapour pressure of a liquid subjected to pressure 130
4B. 2 The location of coexistence curves 131
(a) The slopes of the coexistence curves 131
(b) The solid-liquid coexistence curve 132
(c) The liquid-vapour coexistence curve 132
(d) The solid-vapour coexistence curve 134
Checklist of concepts 134
Checklist of equations 135
FOCUS 5 Simple mixtures 141
TOPIC 5A The thermodynamic description of mixtures 143
5A.1 Partial molar quantities 143
(a) Partial molar volume 143
(b) Partial molar Gibbs energies 145
(c) The Gibbs-Duhem equation 146
5A. 2 The thermodynamics of mixing 147
(a) The Gibbs energy of mixing of perfect gases 148
(b) Other thermodynamic mixing functions 149
5A. 3 The chemical potentials of liquids 150
(a) Ideal solutions 150
(b) Ideal-dilute solutions 151
Checklist of concepts 153
Checklist of equations 154
TOPIC 5B The properties of solutions 155
5B. 1 Liquid mixtures 155
(a) Ideal solutions 155
(b) Excess functions and regular solutions 156
5B. 2 Colligative properties 158
(a) The common features of colligative properties 158
(b) The elevation of boiling point 159(c) The depression of freezing point
(d) Solubility161
(e) Osmosis 162
Checklist of concepts 165
Checklist of equations 165
TOPIC 5C Phase diagrams of binary systems: liquids 166
5C. 1 Vapour pressure diagrams 166
5C. 2 Temperature-composition diagrams(a) The construction of the diagrams168(b) The interpretation of the diagrams5C. 3 Distillation
(a) Fractional distillation168
(b) Azeotropes 171
(c) Immiscible liquids 172
5C. 4 Liquid-liquid phase diagrams 172
(a) Phase separation 173(b) Critical solution temperatures
(c) The distillation of partially miscible liquids174
Checklist of concepts 177
Checklist of equations 177
TOPIC 5D Phase diagrams of binary systems: solids 178
5D. 1 Eutectics 178
5D. 2 Reacting systems 180
5D. 3 Incongruent melting 180
Checklist of concepts 181
TOPIC 5E Phase diagrams of ternary systems 182
5E. 1 Triangular phase diagrams 182
5E. 2 Ternary systems 183
(a) Partially miscible liquids 183
(b) Ternary solids 184
Checklist of concepts 185
TOPIC 5F Activities 186
5F. 1 The solvent activity 186
5F. 2 The solute activity 187
(a) Ideal-dilute solutions 187
(b) Real solutes 187
(c) Activities in terms of molalities 188
5F.3 The activities of regular solutions 189
5F. 4 The activities of ions 190
(a) Mean activity coefficients 190
(b) The Debye-Hückel limiting law 191
(c) Extensions of the limiting law 192
Checklist of concepts 193
Checklist of equations 193
FOCUS 6 Chemical equilibrium 205
TOPIC 6A The equilibrium constant 206
6A. 1 The Gibbs energy minimum 206
(a) The reaction Gibbs energy 206
(b) Exergonic and endergonic reactions 207
6A. 2 The description of equilibrium 207
(a) Perfect gas equilibria 208
(b) The general case of a reaction 209
(c) The relation between equilibrium constants 211
(d) Molecular interpretation of the equilibrium constant 212
Checklist of concepts 213
Checklist of equations 213
TOPIC 6B The response of equilibria to the conditions 214
6B. 1 The response to pressure 214
6B.2 The response to temperature 216
(a) The van't Hoff equation 216
(b) The value of K at different temperatures 217
Checklist of concepts 218
Checklist of equations 218
TOPIC 6C Electrochemical cells 219
6C. 1 Half-reactions and electrodes 219
6C. 2 Varieties of cell 220
(a) Liquid junction potentials 220
(b) Notation 221
6C.3 The cell potential 221
(a) The Nernst equation 222
(b) Cells at equilibrium 223
6C.4 The determination of thermodynamic functions 224
Checklist of concepts 225
Checklist of equations 225
TOPIC 6D Electrode potentials 226
6D. 1 Standard potentials 226
(a) The measurement procedure 227
(b) Combining measured values 228
6D. 2 Applications of standard electrode potentials 228
(a) The electrochemical series 228
(b) The determination of activity coefficients 229
(c) The determination of equilibrium constants 229
Checklist of concepts 230
Checklist of equations 230
FOCUS 7 Quantum theory 237
TOPIC 7A The origins of quantum mechanics 239
7A. 1 Energy quantization 239
(a) Black-body radiation 239
(b) Heat capacity 242
(c) Atomic and molecular spectra 243
7A. 2 Wave-particle duality 244
(a) The particle character of electromagnetic radiation 244(b) The wave character of particles
Checklist of concepts 247246
Checklist of equations
TOPIC 7B Wavefunctions 248
7B. 1 The Schrödinger equation 248
7B. 2 The Born interpretation 248
(a) Normalization 250
(b) Constraints on the wavefunction 251
(c) Quantization 251
Checklist of concepts 252
Checklist of equations 252
TOPIC 7C Operators and observables 253
7C. 1 Operators 253
(a) Eigenvalue equations 253
(b) The construction of operators 254
(c) Hermitian operators 255
(d) Orthogonality 256
7C. 2 Superpositions and expectation values 257
7C. 3 The uncertainty principle 259
7C. 4 The postulates of quantum mechanics 261
Checklist of concepts 261
Checklist of equations 262
TOPIC 7D Translational motion 263
7D. 1 Free motion in one dimension 263
7D. 2 Confined motion in one dimension 264
(a) The acceptable solutions 264
(b) The properties of the wavefunctions 265
(c) The properties of the energy 266
7D. 3 Confined motion in two and more dimensions 268
(a) Energy levels and wavefunctions 268
(b) Degeneracy
7D. 4 Tunnelling270271
Checklist of concepts 273
Checklist of equations 274
TOPIC 7E Vibrational motion 275
7E. 1 The harmonic oscillator 275
(a) The energy levels 276
(b) The wavefunctions 276
7E. 2 Properties of the harmonic oscillator 279
(a) Mean values 279
(b) Tunnelling
Checklist of concepts 282
Checklist of equations 282
TOPIC 7F Rotational motion 283
7F. 1 Rotation in two dimensions 283
(a) The solutions of the Schrödinger equation 284
(b) Quantization of angular momentum 285
7F. 2 Rotation in three dimensions 286
(a) The wavefunctions and energy levels 286
(b) Angular momentum 289
(c) The vector model 290
Checklist of concepts 291
Checklist of equations 292
FOCUS 8 Atomic structure and spectra 305
TOPIC 8A Hydrogenic atoms 306
8A. 1 The structure of hydrogenic atoms 306
(a) The separation of variables 306
(b) The radial solutions 307
8A. 2 Atomic orbitals and their energies 309
(a) The specification of orbitals 310
(b) The energy levels 310
(c) Ionization energies 311
(d) Shells and subshells 311
(e) s Orbitals 312
(f) Radial distribution functions 313
(g) p Orbitals 315
(h) d Orbitals 316
Checklist of concepts 316
Checklist of equations 317
TOPIC 8B Many-electron atoms 318
8B. 1 The orbital approximation 318
8B. 2 The Pauli exclusion principle 319
(a) Spin 319
(b) The Pauli principle 320
8B. 3 The building-up principle 322
(a) Penetration and shielding 322
(b) Hund's rules 323
(c) Atomic and ionic radii 325
(d) Ionization energies and electron affinities 326
8B. 4 Self-consistent field orbitals 327
Checklist of concepts 328
Checklist of equations 328
TOPIC 8C Atomic spectra 329
8C. 1 The spectra of hydrogenic atoms 329
8C. 2 The spectra of many-electron atoms 330
(a) Singlet and triplet terms 330
(b) Spin-orbit coupling 331
(c) Term symbols 334
(d) Hund's rules and term symbols 337
(e) Selection rules 337
Checklist of concepts 338
Checklist of equations 338
FOCUS 9 Molecular structure 343
PROLOGUE The Born-Oppenheimer approximation 345
TOPIC 9A Valence-bond theory 346
9A. 1 Diatomic molecules 346
9A. 2 Resonance 348
9A. 3 Polyatomic molecules 348
a) Promotion 349
(b) Hybridization 350Checklist of conceptsChecklist of equations352
TOPIC 9B Molecular orbital theory: the hydrogen molecule-ion 353
9B. 1 Linear combinations of atomic orbitals 353
(a) The construction of linear combinations 353(b) Bonding orbitals
(c) Antibonding orbitals 356354
9B. 2 Orbital notation 358
Checklist of concepts 358
Checklist of equations
TOPIC 9C Molecular orbital theory: homonuclear diatomic molecules 359
9C. 1 Electron configurations 359
(a) MO energy level diagrams 359
(b) σ Orbitals and π orbitals 360
c) The overlap integral 361
(d) Period 2 diatomic molecules 3629C. 2 Photoelectron spectroscopyChecklist of concepts
365Checklist of equations-365
TOPIC 9D Molecular orbital theory: heteronuclear diatomic molecules 366
9D. 1 Polar bonds and electronegativity 366
9D. 2 The variation principle 367
(a) The procedure 368
(b) The features of the solutions 370
Checklist of concepts 372
Checklist of equations 372
TOPIC 9E Molecular orbital theory: polyatomic molecules 373
9E. 1 The Hückel approximation 373
(a) An introduction to the method 373
(b) The matrix formulation of the method 374
9E. 2 Applications376
(a) π-Electron binding energy 376
(b) Aromatic stability 378
9E. 3 Computational chemistry 379
(a) Basis functions and basis sets 379
(b) Electron correlation 380
(c) Density functional theory 381
(d) Practical calculations 381
(e) Graphical representations 381
Checklist of concepts 382
Checklist of equations 382
TOPIC 9F Computational chemistry 383
9F. 1 The central challenge 383
9F. 2 The Hartree-Fock formalism 384
9F. 3 The Roothaan equations 385
9F.4 Evaluation and approximation of the integrals 386
9F. 5 Density functional theory 388
Checklist of concepts 389
Checklist of equations 390
FOCUS 10 Molecular symmetry 397
TOPIC 10A Shape and symmetry 398
10A. 1 Symmetry operations and symmetry elements 398
10A. 2 The symmetry classification of molecules 400
(a) The groups C_{1}, C_{i}, and C_{s} 402
(b) The groups $C_{n^{\prime}} C_{n v^{\prime}}$, and $C_{n h}$ 402
(c) The groups $D_{n^{\prime}} D_{n h^{\prime}}$, and $D_{n d}$ 403
(d) The groups S 403
(e) The cubic groups 403
(f) The full rotation group 404
10A. 3 Some immediate consequences of symmetry 404
(a) Polarity 404
(b) Chirality 405
Checklist of concepts 406
Checklist of symmetry operations and elements 406
TOPIC 10B Group theory 407
10B. 1 The elements of group theory 407
10B. 2 Matrix representations 409
(a) Representatives of operations 409
b) The representation of a group 409
(c) Irreducible representations 410
(d) Characters 411
10B. 3 Character tables 412
(a) The symmetry species of atomic orbitals 413
(b) The symmetry species of linear combinations of orbitals 413
(c) Character tables and degeneracy 414
Checklist of concepts 415
Checklist of equations 416
TOPIC 10C Applications of symmetry 417
10C. 1 Vanishing integrals 417
(a) Integrals of the product of functions 418
(b) Decomposition of a representation 419
10C. 2 Applications to molecular orbital theory 420
(a) Orbital overlap 420
(b) Symmetry-adapted linear combinations 421
10C. 3 Selection rules 422
Checklist of concepts 423
Checklist of equations 423
FOCUS 11 Molecular spectroscopy 427
TOPIC 11A General features of molecular spectroscopy 429
11A. 1 The absorption and emission of radiation 430
(a) Stimulated and spontaneous radiative processes 430
(b) Selection rules and transition moments
(c) The Beer-Lambert law
11A. 2 Spectral linewidths
(a) Doppler broadening431431(b) Lifetime broadening11A. 3 Experimental techniques(a) Sources of radiation
(b) Spectral analysis
(c) Detectors
(d) Examples of spectrometers
Checklist of concepts
Checklist of equations
TOPIC 11B Rotational spectroscopy 44011B. 1 Rotational energy levels433
433435435436436439(b) Symmetric rotors(c) Linear rotors(d) Centrifugal distortion
11B. 2 Microwave spectroscopy
(a) Selection rules(b) The appearance of microwave spectra11B. 3 Rotational Raman spectroscopy440
(a) Spherical rotors
(b) Spmers 441442444444
44444544611B. 4 Nuclear statistics and rotational states447
Checklist of concepts 451449
Checklist of equations
TOPIC 11C Vibrational spectroscopy of diatomic molecules 452
11C. 1 Vibrational motion 452
11C. 2 Infrared spectroscopy 453
11C. 3 Anharmonicity 454(a) The convergence of energy levels
(b) The Birge-Sponer plot
11C. 4 Vibration-rotation spectra
(a) Spectral branches
(b) Combination differences
11C. 5 Vibrational Raman spectra
Checklist of concepts454455456457458458Checklist of equations460TOPIC 11D Vibrational spectroscopy ofpolyatomic molecules461
11D. 1 Normal modes 461
11D. 2 Infrared absorption spectra 462
11D. 3 Vibrational Raman spectra 464
Checklist of concepts 464
Checklist of equations 465
TOPIC 11E Symmetry analysis of vibrational spectra 466
11E. 1 Classification of normal modes according to symmetry 466
11E. 2 Symmetry of vibrational wavefunctions 468
(a) Infrared activity of normal modes 468
(b) Raman activity of normal modes 469
(c) The symmetry basis of the exclusion rule 469
Checklist of concepts 469
TOPIC 11F Electronic spectra 470
11F. 1 Diatomic molecules 470
(a) Term symbols 470
(b) Selection rules 473
(c) Vibrational fine structure 473
(d) Rotational fine structure 476
11F. 2 Polyatomic molecules 477
(a) d-Metal complexes 478
(b) $\pi^{*} \leftarrow \pi$ and $\pi^{*} \leftarrow \mathrm{n}$ transitions 479
Checklist of concepts 480
Checklist of equations 480
TOPIC 11G Decay of excited states 481
11G. 1 Fluorescence and phosphorescence 481
11G. 2 Dissociation and predissociation 483
11G. 3 Lasers 484
Checklist of concepts 485
FOCUS 12 Magnetic resonance 499
TOPIC 12A General principles 500
12A. 1 Nuclear magnetic resonance 500
(a) The energies of nuclei in magnetic fields 500
(b) The NMR spectrometer 502
12A. 2 Electron paramagnetic resonance 503
(a) The energies of electrons in magnetic fields 503
(b) The EPR spectrometer 504
Checklist of concepts 505
Checklist of equations 505
TOPIC 12B Features of NMR spectra 506
12B. 1 The chemical shift 506
12B. 2 The origin of shielding constants 508
(a) The local contribution 508
(b) Neighbouring group contributions 509
(c) The solvent contribution 510
12B. 3 The fine structure 511
(a) The appearance of the spectrum 511
(b) The magnitudes of coupling constants 513
12B.4 The origin of spin-spin coupling 514
(a) Equivalent nuclei 516
(b) Strongly coupled nuclei 517
12B. 5 Exchange processes 517
12B. 6 Solid-state NMR 518
Checklist of concepts 519
Checklist of equations 520
TOPIC 12C Pulse techniques in NMR 521
12C. 1 The magnetization vector 521
(a) The effect of the radiofrequency field 522
(b) Time- and frequency-domain signals 523
12C. 2 Spin relaxation 525
(a) The mechanism of relaxation 525
(b) The measurement of T_{1} and T_{2} 526
12C. 3 Spin decoupling 527
12C. 4 The nuclear Overhauser effect 528
Checklist of concepts 530
Checklist of equations 530
TOPIC 12D Electron paramagnetic resonance 531
12D. 1 The g-value 531
12D. 2 Hyperfine structure 532
(a) The effects of nuclear spin 532
12D. 3 The McConnell equation 533
(a) The origin of the hyperfine interaction 534
Checklist of concepts 535
Checklist of equations 535
FOCUS 13 Statistical thermodynamics 543
TOPIC 13A The Boltzmann distribution 544
13A.1 Configurations and weights 544
(a) Instantaneous configurations 544
(b) The most probable distribution 545
13A. 2 The relative populations of states 548
Checklist of concepts 549
Checklist of equations 549
TOPIC 13B Molecular partition functions 550
13B. 1 The significance of the partition function 550
13B.2 Contributions to the partition function 552
(a) The translational contribution 552
(b) The rotational contribution 554
(c) The vibrational contribution 558
(d) The electronic contribution 559
Checklist of concepts 560
Checklist of equations 560
TOPIC 13C Molecular energies 561
13C. 1 The basic equations 561
13C. 2 Contributions of the fundamental modes of motion 562
(a) The translational contribution 562
(b) The rotational contribution 562
(c) The vibrational contribution 563
(d) The electronic contribution 564
(e) The spin contribution 565
Checklist of concepts 565
Checklist of equations 566
TOPIC 13D The canonical ensemble 567
13D. 1 The concept of ensemble 567
(a) Dominating configurations 568
(b) Fluctuations from the most probable distribution 568
13D. 2 The mean energy of a system 569
13D. 3 Independent molecules revisited 569
13D. 4 The variation of the energy with volume 570
Checklist of concepts 572
Checklist of equations 572
TOPIC 13E The internal energy and the entropy 573
13E. 1 The internal energy 573
(a) The calculation of internal energy 573
(b) Heat capacity 574
13E.2 The entropy 575
(a) Entropy and the partition function 576
(b) The translational contribution 577
(c) The rotational contribution 578
(d) The vibrational contribution 579
(e) Residual entropies 579
Checklist of concepts 581
Checklist of equations 581
TOPIC 13F Derived functions 582
13F. 1 The derivations 582
13F.2 Equilibrium constants 585
(a) The relation between K and the partition function 585
(b) A dissociation equilibrium 586
(c) Contributions to the equilibrium constant 586
Checklist of concepts 588
Checklist of equations 588
FOCUS 14 Molecular interactions 597
TOPIC 14A The electric properties of molecules 599
14A. 1 Electric dipole moments 599
14A. 2 Polarizabilities 601
14A. 3 Polarization 603
(a) The mean dipole moment 603
(b) The frequency dependence of the polarization 604
(c) Molar polarization 604
Checklist of concepts 606
Checklist of equations 607
TOPIC 14B Interactions between molecules 608
14B. 1 The interactions of dipoles 608
(a) Charge-dipole interactions 608
(b) Dipole-dipole interactions 609
(c) Dipole-induced dipole interactions 612
(d) Induced dipole-induced dipole interactions 612
14B. 2 Hydrogen bonding 613
14B. 3 The total interaction 614
Checklist of concepts 616
Checklist of equations 617
TOPIC 14C Liquids 61814C. 1 Molecular interactions in liquids(a) The radial distribution function
(b) The calculation of $g(r)$(c) The thermodynamic properties of liquids14C. 2 The liquid-vapour interface(a) Surface tension
(b) Curved surfaces
(c) Capillary action
14C. 3 Surface films
(a) Surface pressure
(b) The thermodynamics of surface layers
14C. 4 Condensation
Checklist of concepts
Checklist of equations
TOPIC 14D Macromolecules 629
14D. 1 Average molar masses 62914D. 2 The different levels of structure
14D. 3 Random coils
(a) Measures of size
(b) Constrained chains
(c) Partly rigid coils
14D. 4 Mechanical properties(a) Conformational entropy(b) Elastomers
14D. 5 Thermal properties
Checklist of concepts
Checklist of equations630631631634634635639
TOPIC 14E Self-assembly 64014E. 1 Colloids(a) Classification and preparation(b) Structure and stability
(c) The electrical double layer
14E. 2 Micelles and biological membranes
(a) The hydrophobic interaction
(b) Micelle formation
(c) Bilayers, vesicles, and membranes640Checklist of concepts647
Checklist of equations 647
FOCUS 15 Solids 655
TOPIC 15A Crystal structure 657
15A. 1 Periodic crystal lattices 657
15A. 2 The identification of lattice planes 659
(a) The Miller indices 659(b) The separation of neighbouring planes
Checklist of conceptsChecklist of equations661
TOPIC 15B Diffraction techniques 663
15B. 1 X-ray crystallography 663
(a) X -ray diffraction 663
(b) Bragg's law
(c) Scattering factors 666
(d) The electron density 666
(e) The determination of structure 669
15B. 2 Neutron and electron diffraction 671
Checklist of concepts 672
Checklist of equations 672
TOPIC 15C Bonding in solids 673
15C. 1 Metals 673
(a) Close packing 673
(b) Electronic structure of metals 675
15C. 2 Ionic solids 677
(a) Structure 677
(b) Energetics 678
15C. 3 Covalent and molecular solids 681
Checklist of concepts 682
Checklist of equations 682
TOPIC 15D The mechanical properties of solids 683
Checklist of concepts 685
Checklist of equations 685
TOPIC 15E The electrical properties of solids 686
15E. 1 Metallic conductors 686
15E. 2 Insulators and semiconductors 687
15E. 3 Superconductors 689
Checklist of concepts 690
Checklist of equations 690
TOPIC 15F The magnetic properties of solids 691
15F. 1 Magnetic susceptibility 691
15F. 2 Permanent and induced magnetic moments 692
15F.3 Magnetic properties of superconductors 693
Checklist of concepts 694
Checklist of equations 694
TOPIC 15G The optical properties of solids 695
15G. 1 Excitons 695
15G. 2 Metals and semiconductors 696
(a) Light absorption 696
(b) Light-emitting diodes and diode lasers 697
15G. 3 Nonlinear optical phenomena 697
Checklist of concepts 698
FOCUS 16 Molecules in motion 707
TOPIC 16A Transport properties of a perfect gas 708
16A. 1 The phenomenological equations 708
16A. 2 The transport parameters 710
(a) The diffusion coefficient 711
(b) Thermal conductivity 712
(c) Viscosity 714
(d) Effusion 715
Checklist of concepts 716
Checklist of equations 716
TOPIC 16B Motion in liquids 717
16B. 1 Experimental results
(a) Liquid viscosity
(b) Electrolyte solutions
16B.2 The mobilities of ions
(a) The drift speed
(b) Mobility and conductivity
(c) The Einstein relations
Checklist of concepts
Checklist of equations
TOPIC 16C Diffusion717717718719719721722723723724
16C. 1 The thermodynamic view 724
16C. 2 The diffusion equation 726
(a) Simple diffusion 726
(b) Diffusion with convection 728
(c) Solutions of the diffusion equation 728
16C. 3 The statistical view 730
Checklist of concepts 732
Checklist of equations 732
FOCUS 17 Chemical kinetics 737
TOPIC 17A The rates of chemical reactions 739
17A. 1 Monitoring the progress of a reaction 739
(a) General considerations 739
(b) Special techniques 740
17A. 2 The rates of reactions 741
(a) The definition of rate 741
(b) Rate laws and rate constants 742
(c) Reaction order(d) The determination of the rate lawChecklist of conceptsChecklist of equations
TOPIC 17B Integrated rate laws 747743744746746
17B. 1 Zeroth-order reactions 747
17B. 2 First-order reactions 747
17B. 3 Second-order reactions 749
Checklist of concepts
Checklist of equations 752
TOPIC 17C Reactions approaching equilibrium 753
17C. 1 First-order reactions approaching equilibrium 753
17C. 2 Relaxation methods 754
Checklist of concepts 756
Checklist of equations 756
TOPIC 17D The Arrhenius equation 757
17D. 1 The temperature dependence of rate constants 757
17D. 2 The interpretation of the Arrhenius parameters 759
(a) A first look at the energy requirements of reactions 759
(b) The effect of a catalyst on the activation energy 760
Checklist of concepts 761
Checklist of equations 761
TOPIC 17E Reaction mechanisms 762
17E. 1 Elementary reactions 762
17E. 2 Consecutive elementary reactions 763
17E. 3 The steady-state approximation 764
17E. 4 The rate-determining step 766
17E. 5 Pre-equilibria 767
17E. 6 Kinetic and thermodynamic control of reactions 768
Checklist of concepts 768
Checklist of equations 768
TOPIC 17F Examples of reaction mechanisms 769
17F. 1 Unimolecular reactions 769
17F. 2 Polymerization kinetics 771
(a) Stepwise polymerization 771
(b) Chain polymerization 772
17F. 3 Enzyme-catalysed reactions 774
Checklist of concepts 777
Checklist of equations 777
TOPIC 17G Photochemistry 778
17G. 1 Photochemical processes 778
17G. 2 The primary quantum yield 779
17G. 3 Mechanism of decay of excited singlet states 780
17G. 4 Quenching 781
17G. 5 Resonance energy transfer 783
Checklist of concepts 784
Checklist of equations 784
FOCUS 18 Reaction dynamics 793
TOPIC 18A Collision theory 794
18A. 1 Reactive encounters 794
(a) Collision rates in gases 795
(b) The energy requirement 795
(c) The steric requirement 798
18A. 2 The RRK model 799
Checklist of concepts 800
Checklist of equations 800
TOPIC 18B Diffusion-controlled reactions 801
18B.1 Reactions in solution 801
(a) Classes of reaction 801
(b) Diffusion and reaction 802
18B. 2 The material-balance equation 803
(a) The formulation of the equation 803
(b) Solutions of the equation 804
Checklist of concepts 804
Checklist of equations 805
TOPIC 18C Transition-state theory 806
18C. 1 The Eyring equation 806
(a) The formulation of the equation 806
(b) The rate of decay of the activated complex 807
(c) The concentration of the activated complex 807
(d) The rate constant 808
18C. 2 Thermodynamic aspects 809
(a) Activation parameters 809
(b) Reactions between ions 811
18C. 3 The kinetic isotope effect 812
Checklist of concepts 814
Checklist of equations 814
TOPIC 18D The dynamics of molecular collisions 815
18D. 1 Molecular beams 815(b) Experimental results18D. 2 Reactive collisions(a) Probes of reactive collisions
(b) State-to-state reaction dynamics
18D. 3 Potential energy surfaces
18D. 4 Some results from experiments and calculations
(a) Techniques 815(a) The direction of attack and separation820(b) Attractive and repulsive surfaces821
(c) Quantum mechanical scattering theory 822
Checklist of concepts 823Checklist of equationsTOPIC 18E Electron transfer in homogeneoussystems824
18E. 1 The rate law 824
18E. 2 The role of electron tunnelling 825
18E. 3 The rate constant 826
18E.4 Experimental tests of the theory 828
Checklist of concepts 829
Checklist of equations 829
FOCUS 19 Processes at solid surfaces 835
TOPIC 19A An introduction to solid surfaces 836
19A. 1 Surface growth 836
19A. 2 Physisorption and chemisorption 837
19A. 3 Experimental techniques 838
(a) Microscopy 839
(b) Ionization techniques 840
(c) Diffraction techniques 841
(d) Determination of the extent and rates of adsorption and desorption 842
Checklist of concepts 843
Checklist of equations 843
TOPIC 19B Adsorption and desorption 844
19B. 1 Adsorption isotherms 844
(a) The Langmuir isotherm 844
(b) The isosteric enthalpy of adsorption 845
(c) The BET isotherm 847
(d) The Temkin and Freundlich isotherms 849
19B. 2 The rates of adsorption and desorption 850
(a) The precursor state 850
(b) Adsorption and desorption at the molecular level 850
(c) Mobility on surfaces 852
Checklist of concepts 852
Checklist of equations 852
TOPIC 19C Heterogeneous catalysis 853
19C. 1 Mechanisms of heterogeneous catalysis 853
(a) Unimolecular reactions 853
(b) The Langmuir-Hinshelwood mechanism 854
(c) The Eley-Rideal mechanism 855
19C. 2 Catalytic activity at surfaces 855
Checklist of concepts 856
Checklist of equations 856
TOPIC 19D Processes at electrodes 857
19D. 1 The electrode-solution interface 857
19D. 2 The current density at an electrode 858
(a) The Butler-Volmer equation 858
(b) Tafel plots 862
19D. 3 Voltammetry 862
19D. 4 Electrolysis 865
19D. 5 Working galvanic cells 865
Checklist of concepts 866
Checklist of equations 866
Resource section 877
1 Mathematical resources 878
1.1 Integration 878
1.2 Differentiation 878
1.3 Series expansions 881
2 Quantities and units 882
3 Data 884
4 Character tables 910
Index 915

CONVENTIONS

To avoid intermediate rounding errors, but to keep track of values in order to be aware of values and to spot numerical
errors, we display intermediate results as n.nnп. . . and round the calculation only at the final step.

PHYSICAL CHEMISTRY: PEOPLE AND PERSPECTIVES

To watch these interviews, go to this section of the e-book.

LIST OF TABLES

Table 1A. 1 Pressure units
Table 1A. 2 The (molar) gas constant

Table 1B. 1 Collision cross-sectionsTable 1C. 1 Second virial coefficients, $B /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$Table 1C. 2 Critical constants of gasesTable 1C. 3 van der Waals coefficientsTable 1C. 4 Selected equations of stateTable 2A. 1 Varieties of work
Table 2B. 1 Temperature variation of molar heat capacities,$C_{p, \mathrm{~m}} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)=a+b T+c / T^{2}$
Table 2C. 1 Standard enthalpies of fusion and vaporization at the transition temperature$\Delta_{\mathrm{trs}} H^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Table 2C. 2 Enthalpies of reaction and transition51
Table 2C. 3 Standard enthalpies of formation andcombustion of organic compounds at 298 K
Table 2C. 4 Standard enthalpies of formation of inorganic compounds at 298 K 53
Table 2C. 5 Standard enthalpies of formation of organiccompounds at 298 K
Table 2D. 1 Expansion coefficients (α) and isothermalcompressibilities $\left(\kappa_{T}\right)$ at 298 K
Table 2D. 2 Inversion temperatures (T_{I}), normal freezing (T_{f}) and boiling (T_{b}) points, and Joule-Thomson coefficients (μ) at 1 bar and 298 K
Table 3B. 1 Entropies of phase transitions, $\Delta_{\mathrm{trs}} S /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$at the corresponding normal transitiontemperatures (at 1 atm)
Table 3B. 2 The standard enthalpies and entropies ofvaporization of liquids at their boilingtemperatures
Table 3C. 1 Standard Third-Law entropies at 298 K 93
Table 3D. 1 Standard Gibbs energies of formation at 298 K 100
Table 3E. 1 The Maxwell relations 105
Table 5A. 1 Henry's law constants for gases in water at 153298 K
Table 5B. 1 Freezing-point (K_{f}) and boiling-point (K_{b}) 16053
Table 5F. 1 Ionic strength and molality, $I=k b / b^{\ominus}$ 191
Table 5F. 2 Mean activity coefficients in water at 298 K 192
Table 5F. 3 Activities and standard states: a summary 193
Table 6C. 1 Varieties of electrode 219
Table 6D. 1 Standard potentials at 298 K 226
Table 6D. 2 The electrochemical series 229
Table 7E. 1 The Hermite polynomials 277
Table 7F. 1 The spherical harmonics 288
Table 8A. 1 Hydrogenic radial wavefunctions 308
Table 8B. 1 Effective nuclear charge 322
Table 8B. 2 Atomic radii of main-group elements, r / pm 325
Table 8B. 3 Ionic radii, r / pm 326
Table 8B. 4 First and second ionization energies 326
52
Table 11C. 1 Properties of diatomic molecules458
Table 11F. 1 Colour, frequency, and energy of light 470
Table 11F. 2 Absorption characteristics of some groups and 477 molecules
Table 11G. 1 Characteristics of laser radiation and their 484 chemical applications
Table 12A. 1 Nuclear constitution and the nuclear spin 500quantum number
Table 12A. 2 Nuclear spin properties 501
Table 12D. 1 Hyperfine coupling constants for atoms, a / mT 534
Table 13B. 1 Rotational temperatures of diatomic molecules 556
Table 13B. 2 Symmetry numbers of molecules 557
Table 13B. 3 Vibrational temperatures of diatomic molecules 559
Table 14A. 1 Dipole moments and polarizability volumes 599
Table 14B. 1 Interaction potential energies 612
Table 14B. 2 Lennard-Jones-(12,6) potential energy 616parameters
Table 14C. 1 Surface tensions of liquids at 293 K 621
Table 14E. 1 Micelle shape and the surfactant parameter 645
Table 15A. 1 The seven crystal systems 658
Table 15C. 1 The crystal structures of some elements 674
Table 15C. 2 Ionic radii, r / pm 678
Table 15C. 3 Madelung constants 679
Table 15C. 4 Lattice enthalpies at $298 \mathrm{~K}, \Delta H_{\mathrm{L}} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ 681
Table 15F. 1 Magnetic susceptibilities at 298 K 692
Table 16A. 1 Transport properties of gases at 1 atm 709
Table 16B. 1 Viscosities of liquids at 298 K 717
Table 16B. 2 Ionic mobilities in water at 298 K 720
Table 16B. 3 Diffusion coefficients at $298 \mathrm{~K}, D /\left(10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$ 722
Table 17B. 1 Kinetic data for first-order reactions 748
Table 17B. 2 Kinetic data for second-order reactions 749
Table 17B. 3 Integrated rate laws 751
Table 17D. 1 Arrhenius parameters 757
Table 17G. 1 Examples of photochemical processes 778
Table 17G. 2 Common photophysical processes 779
Table 17G. 3 Values of R_{0} for some donor-acceptor pairs 783
Table 18A. 1 Arrhenius parameters for gas-phase reactions 798
Table 18B. 1 Arrhenius parameters for solvolysis reactions 802 in solution
Table 19A. 1 Maximum observed standard enthalpies of 837 physisorption at 298 K
Table 19A. 2 Standard enthalpies of chemisorption, 837
$\Delta_{\text {ad }} H^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$, at 298 K
Table 19C. 1 Chemisorption abilities 856
Table 19D. 1 Exchange-current densities and transfer 861coefficients at 298 K
RESOURCE SECTION TABLES
Table 1.1 Common integrals 879
Table 2.1 Some common units 882
Table 2.2 Common SI prefixes 882
Table 2.3 The SI base units 882
Table 2.4 A selection of derived units 883
Table 0.1 Physical properties of selected materials 885
Table 0.2 Masses and natural abundances of selected 886

LIST OF THE CHEMIST'S TOOLKITS

Number Title
2A. 1 Electrical charge, current, power, and energy 41
2A. 2 Partial derivatives 42
3E. 1 Exact differentials 105
5B. 1 Molality and mole fraction 160
7A. 1 Electromagnetic radiation 239
7A. 2 Diffraction of waves 246
7B. 1 Complex numbers 249
7F. 1 Cylindrical coordinates 283
7F. 2 Spherical polar coordinates 287
8C. 1 Combining vectors 332
9D. 1 Determinants 369
9 E .1 Matrices 375
11A. 1 Exponential and Gaussian functions 434
12B. 1 Dipolar magnetic fields 509
12C. 1 The Fourier transform 524
16B. 1 Electrostatics 720
17B. 1 Integration by the method 751

LIST OF MATERIAL PROVIDED AS A DEEPER LOOK

The list of A deeper look material that can be found via the e-book. You will also find references to this material where relevant throughout the book.

Number	Title
2D. 1	The Joule-Thomson effect and isenthalpic change
3D. 1	The Born equation
5F. 1	The Debye-Hückel theory
5 5. 2	The fugacity
7D. 1	Particle in a triangle
7F. 1	Separation of variables
9B. 1	The energies of the molecular orbitals of H_{2}^{+}
9F. 1	The equations of computational chemistry
9F. 2	The Roothaan equations
11A. 1	Origins of spectroscopic transitions
11B. 1	Rotational selection rules
11C. 1	Vibrational selection rules
13D. 1	The van der Waals equation of state
14B. 1	The electric dipole-dipole interaction
14C. 1	The virial and the virial equation of state
15D. 1	Establishing the relation between bulk and molecular properties
16C. 1	Diffusion in three dimensions
16C. 2	The random walk
18A. 1	The RRK model
19B. 1	The BET isotherm

LIST OF IMPACTS

The list of Impacts that can be found via the e-book. You will also find references to this material where relevant throughout the book.

Number	Focus	Title
1	1	... on environmental science: The gas laws and the weather
2	1	. . . on astrophysics: The Sun as a ball of perfect gas
3	2	... on technology: Thermochemical aspects of fuels and foods
4	3	. . . on engineering: Refrigeration
5	3	. . . on materials science: Crystal defects
6	4	. . . on technology: Supercritical fluids
7	5	. . . on biology: Osmosis in physiology and biochemistry
8	5	. . . on materials science: Liquid crystals
9	6	. . on biochemistry: Energy conversion in biological cells
10	6	. . . on chemical analysis: Species-selective electrodes
11	7	. . .on technology: Quantum computing
12	7	. . . on nanoscience: Quantum dots
13	8	. . . on astrophysics: The spectroscopy of stars
14	9	\ldots. .on biochemistry: The reactivity of $\mathrm{O}_{2}, \mathrm{~N}_{2}$, and NO
15	9	. . .on biochemistry: Computational studies of biomolecules
16	11	. . . on astrophysics: Rotational and vibrational spectroscopy of interstellar species
17	11	. . . on environmental science: Climate change
18	12	. . . on medicine: Magnetic resonance imaging
19	12	. . . on biochemistry and nanoscience: Spin probes
20	13	... on biochemistry: The helix-coil transition in polypeptides
21	14	. . . on biology: Biological macromolecules
22	14	. . .on medicine: Molecular recognition and drug design
23	15	. . . on biochemistry: Analysis of X-ray diffraction by DNA
24	15	. . . on nanoscience: Nanowires
25	16	. . . on biochemistry: lon channels
26	17	... on biochemistry: Harvesting of light during plant photosynthesis
27	19	. . . on technology: Catalysis in the chemical industry
28	19	. . . on technology: Fuel cells

ENERGY A First Look

Much of chemistry is concerned with the transfer and transformation of energy, so right from the outset it is important to become familiar with this concept. The first ideas about energy emerged from classical mechanics, the theory of motion formulated by Isaac Newton in the seventeenth century. In the twentieth century classical mechanics gave way to quantum mechanics, the theory of motion formulated for the description of small particles, such as electrons, atoms, and molecules. In quantum mechanics the concept of energy not only survived but was greatly enriched, and has come to underlie the whole of physical chemistry.

1 Force

Classical mechanics is formulated in terms of the forces acting on particles, and shows how the paths of particles respond to them by accelerating or changing direction. Much of the discussion focuses on a quantity called the 'momentum' of the particle.

(a) Linear momentum

'Translation' is the motion of a particle through space. The velocity, v, of a particle is the rate of change of its position. Velocity is a 'vector quantity', meaning that it has both a direction and a magnitude, and is expressed in terms of how fast the particle travels with respect to x-, y-, and z-axes (Fig. 1).

For example, the x-component, v_{x}, is the particle's rate of change of position along the x-axis:

$$
v_{x}=\frac{\mathrm{d} x}{\mathrm{~d} t} \quad \begin{align*}
& \text { Component of velocity } \tag{1a}\\
& \text { [definition] }
\end{align*}
$$

Similar expressions may be written for the y - and z-components. The magnitude of the velocity, as represented by the length of the velocity vector, is the speed, v. Speed is related to the components of velocity by

$$
v=\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)^{1 / 2} \quad \begin{array}{ll}
\text { Speed } \tag{1b}\\
\text { [definition] }
\end{array}
$$

The linear momentum, p, of a particle, like the velocity, is a vector quantity, but takes into account the mass of the particle as well as its speed and direction. Its components are p_{x}, p_{y}, and p_{z} along each axis (Fig. 1b) and its magnitude is p. A heavy particle travelling at a certain speed has a greater linear momentum than a light particle travelling at the same speed. For a particle of mass m, the x-component of the linear momentum is given by

$$
p_{x}=m v_{x} \quad \begin{align*}
& \text { Component of linear momentum } \tag{2}\\
& \text { [definition] }
\end{align*}
$$

and similarly for the y - and z-components.

Brief illustration 1

Imagine a particle of mass m attached to a spring. When the particle is displaced from its equilibrium position and then released, it oscillates back and forth about this equilibrium position. This model can be used to describe many features of a chemical bond. In an idealized case, known as the simple harmonic oscillator, the displacement from equilibrium $x(t)$ varies with time as

$$
x(t)=A \sin 2 \pi v t
$$

In this expression, $v(\mathrm{nu})$ is the frequency of the oscillation and A is its amplitude, the maximum value of the displacement along the x-axis. The x-component of the velocity of the particle is therefore

$$
v_{x}=\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d}(A \sin 2 \pi v t)}{\mathrm{d} t}=2 \pi v A \cos 2 \pi v t
$$

The x-component of the linear momentum of the particle is

$$
p_{x}=m v_{x}=2 \pi v A m \cos 2 \pi v t
$$

(b) Angular momentum

'Rotation' is the change of orientation in space around a central point (the 'centre of mass'). Its description is very similar to that of translation but with 'angular velocity' taking the place of velocity and 'moment of inertia' taking the place of mass. The angular velocity, ω (omega) is the rate of change of orientation (for example, in radians per second); it is a vector with magnitude ω. The moment of inertia, I, is a measure of the mass that is being swung round by the rotational motion. For a particle of mass m moving in a circular path of radius r, the moment of inertia is

$$
I=m r^{2} \quad \begin{align*}
& \text { Moment of inertia } \tag{3a}\\
& \text { [definition] }
\end{align*}
$$

For a molecule composed of several atoms, each atom i gives a contribution of this kind, and the moment of inertia around a given axis is

$$
\begin{equation*}
I=\sum_{i} m_{i} r_{i}^{2} \tag{3b}
\end{equation*}
$$

where r_{i} is the perpendicular distance from the mass m_{i} to the axis. The rotation of a particle is described by its angular momentum, J, a vector with a length that indicates the rate at which the particle circulates and a direction that indicates the axis of rotation (Fig. 2). The components of angular momentum, J_{x}, J_{y}, and J_{z}, on three perpendicular axes show how much angular momentum is associated with rotation around each axis. The magnitude J of the angular momentum is

$$
J=I \omega
$$

Magnitude of angular momentum [definition]

Brief illustration 2

A CO_{2} molecule is linear, and the length of each CO bond is 116 pm . The mass of each ${ }^{16} \mathrm{O}$ atom is $16.00 m_{\mathrm{u}}$, where $m_{\mathrm{u}}=1.661 \times 10^{-27} \mathrm{~kg}$. It follows that the moment of inertia of the molecule around an axis perpendicular to the axis of the molecule and passing through the C atom is

$$
\begin{aligned}
I & =m_{\mathrm{O}} R^{2}+0+m_{\mathrm{O}} R^{2}=2 m_{\mathrm{O}} R^{2} \\
& =2 \times\left(16.00 \times 1.661 \times 10^{-27} \mathrm{~kg}\right) \times\left(1.16 \times 10^{-10} \mathrm{~m}\right)^{2} \\
& =7.15 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

(c) Newton's second law of motion

The central concept of classical mechanics is Newton's second law of motion, which states that the rate of change of momentum is equal to the force acting on the particle. This law underlies the calculation of the trajectory of a particle, a statement about where it is and where it is moving at each moment of time. Like

Figure 2 The angular momentum J of a particle is represented by a vector along the axis of rotation and perpendicular to the plane of rotation. The length of the vector denotes the magnitude J of the angular momentum. The direction of motion is clockwise to an observer looking in the direction of the vector.
the velocity and momentum, the force, F, is a vector quantity with a direction and a magnitude (the 'strength' of the force). Force is reported in newtons, with $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$. For motion along the x-axis Newton's second law states that

$$
\begin{array}{ll}
\frac{\mathrm{d} p_{x}}{\mathrm{~d} t}=F_{x} & \begin{array}{l}
\text { Newton's second law } \\
\text { [in one dimension] }
\end{array} \tag{5a}
\end{array}
$$

where F_{x} is the component of the force acting along the x-axis. Each component of linear momentum obeys the same kind of equation, so the vector p changes with time as

$$
\begin{array}{ll}
\frac{\mathrm{d} \boldsymbol{p}}{\mathrm{~d} t}=\boldsymbol{F} & \begin{array}{l}
\text { Newton's second law } \\
\text { [vector form] }
\end{array} \tag{5b}
\end{array}
$$

Equation 5 is the equation of motion of the particle, the equation that has to be solved to calculate its trajectory.

Brief illustration 3

According to 'Hooke's law', the force acting on a particle undergoing harmonic motion (like that in Brief illustration 2) is proportional to the displacement and directed opposite to the direction of motion, so in one dimension

$$
F_{x}=-k_{f} x
$$

where x is the displacement from equilibrium and k_{f} is the 'force constant', a measure of the stiffness of the spring (or chemical bond). It then follows that the equation of motion of a particle undergoing harmonic motion is $\mathrm{d} p_{x} / \mathrm{d} t=-k_{\mathrm{f}} x$. Then, because $p_{x}=m v_{x}$ and $v_{x}=\mathrm{d} x / \mathrm{d} t$, it follows that $\mathrm{d} p_{x} / \mathrm{d} t=$ $m \mathrm{~d} v_{x} / \mathrm{d} t=m \mathrm{~d}^{2} x / \mathrm{d} t^{2}$. With this substitution, the equation of motion becomes

$$
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-k x
$$

Equations of this kind, which are called 'differential equations', are solved by special techniques. In most cases in this text, the solutions are simply stated without going into the details of how they are found.

Similar considerations apply to rotation. The change in angular momentum of a particle is expressed in terms of the torque, T, a twisting force. The analogue of eqn $5 b$ is then

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{J}}{\mathrm{~d} t}=\boldsymbol{T} \tag{6}
\end{equation*}
$$

Quantities that describe translation and rotation are analogous, as shown below:

Property	Translation	Rotation
Rate	linear velocity, v	angular velocity, ω
Resistance to change	mass, m	moment of inertia, I
Momentum	linear momentum, p	angular momentum, J
Influence on motion	force, F	torque, T

2 Energy

Energy is a powerful and essential concept in science; nevertheless, its actual nature is obscure and it is difficult to say what it 'is'. However, it can be related to processes that can be measured and can be defined in terms of the measurable process called work.

(a) Work

Work, w, is done in order to achieve motion against an opposing force. The work needed to be done to move a particle through the infinitesimal distance $\mathrm{d} x$ against an opposing force F_{x} is

$$
\mathrm{d} w_{\text {on the particle }}=-F_{x} \mathrm{~d} x \quad l l \begin{align*}
& \text { Work } \tag{7a}\\
& \text { [definition] }
\end{align*}
$$

When the force is directed to the left (to negative x), F_{x} is negative, so for motion to the right ($\mathrm{d} x$ positive), the work that must be done to move the particle is positive. With force in newtons and distance in metres, the units of work are joules (J), with $1 \mathrm{~J}=1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$.

The total work that has to be done to move a particle from $x_{\text {initial }}$ to $x_{\text {final }}$ is found by integrating eqn 7 a , allowing for the possibility that the force may change at each point along the path:

$$
\begin{equation*}
w_{\text {on the particle }}=-\int_{x_{\text {initial }}}^{x_{\text {final }}} F_{x} \mathrm{~d} x \tag{7b}
\end{equation*}
$$

Brief illustration 4

Suppose that when a bond is stretched from its equilibrium value R_{e} to some arbitrary value R there is a restoring force proportional to the displacement $x=R-R_{\mathrm{e}}$ from the equilibrium length. Then

$$
F_{x}=-k_{\mathrm{f}}\left(R-R_{\mathrm{e}}\right)=-k_{\mathrm{f}} x
$$

The constant of proportionality, k_{f}, is the force constant introduced in Brief illustration 3. The total work needed to move an atom so that the bond stretches from zero displacement ($x_{\text {initial }}=0$), when the bond has its equilibrium length, to a displacement $x_{\text {final }}=R_{\text {final }}-R_{\mathrm{e}}$ is

$$
\begin{aligned}
w_{\text {on an atom }} & =-\int_{0}^{x_{\text {final }}}\left(-k_{\mathrm{f}} x\right) \mathrm{d} x=k_{\mathrm{f}} \overbrace{\int_{0}^{x_{\text {final }}} x \mathrm{~d} x}^{\text {Integral A. } 1} \\
& =\frac{1}{2} k_{\mathrm{f}} x_{\text {final }}^{2}=\frac{1}{2} k_{\mathrm{f}}\left(R_{\text {final }}-R_{\mathrm{e}}\right)^{2}
\end{aligned}
$$

(All the integrals required in this book are listed in the Resource section.) The work required increases as the square of the displacement: it takes four times as much work to stretch a bond through 20 pm as it does to stretch the same bond through 10 pm .

(b) The definition of energy

Now we get to the core of this discussion. Energy is the capacity to do work. An object with a lot of energy can do a lot of work; one with little energy can do only little work. Thus, a spring that is compressed can do a lot of work as it expands, so it is said to have a lot of energy. Once the spring is expanded it can do only a little work, perhaps none, so it is said to have only a little energy. The SI unit of energy is the same as that of work, namely the joule, with $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$.

A particle may possess two kinds of energy, kinetic energy and potential energy. The kinetic energy, E_{k}, of a particle is the energy it possesses as a result of its motion. For a particle of mass m travelling at a speed v,

$$
\begin{array}{ll}
E_{\mathrm{k}}=\frac{1}{2} m v^{2} & \text { Kinetic energy } \tag{8a}\\
\text { [definition] }
\end{array}
$$

A particle with a lot of kinetic energy can do a lot of work, in the sense that if it collides with another particle it can cause it to move against an opposing force. Because the magnitude of the linear momentum and speed are related by $p=m v$, so $v=p / m$, an alternative version of this relation is

$$
\begin{equation*}
E_{\mathrm{k}}=\frac{p^{2}}{2 m} \tag{8b}
\end{equation*}
$$

It follows from Newton's second law that if a particle is initially stationary and is subjected to a constant force then its linear momentum increases from zero. Because the magnitude of the
applied force may be varied at will, the momentum and therefore the kinetic energy of the particle may be increased to any value.

The potential energy, E_{p} or V, of a particle is the energy it possesses as a result of its position. For instance, a stationary weight high above the surface of the Earth can do a lot of work as it falls to a lower level, so is said to have more energy, in this case potential energy, than when it is resting on the surface of the Earth.

This definition can be turned around. Suppose the weight is returned from the surface of the Earth to its original height. The work needed to raise it is equal to the potential energy that it once again possesses. For an infinitesimal change in height, $\mathrm{d} x$, that work is $-F_{x} \mathrm{~d} x$. Therefore, the infinitesimal change in potential energy is $\mathrm{d} E_{\mathrm{p}}=-F_{x} \mathrm{~d} x$. This equation can be rearranged into a relation between the force and the potential energy:

$$
\begin{equation*}
F_{x}=-\frac{\mathrm{d} E_{\mathrm{p}}}{\mathrm{~d} x} \text { or } F_{x}=-\frac{\mathrm{d} V}{\mathrm{~d} x} \tag{9}
\end{equation*}
$$

Relation of force to potential energy

No universal expression for the dependence of the potential energy on position can be given because it depends on the type of force the particle experiences. However, there are two very important specific cases where an expression can be given. For a particle of mass m at an altitude h close to the surface of the Earth, the gravitational potential energy is

$$
E_{\mathrm{p}}(h)=E_{\mathrm{p}}(0)+m g h \quad \begin{align*}
& \text { Gravitational potential energy } \tag{10}\\
& \text { [close to surface of the Earth] }
\end{align*}
$$

where g is the acceleration of free fall (g depends on location, but its 'standard value' is close to $\left.9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)$. The zero of potential energy is arbitrary. For a particle close to the surface of the Earth, it is common to set $E_{\mathrm{p}}(0)=0$.
The other very important case (which occurs whenever the structures of atoms and molecules are discussed), is the electrostatic potential energy between two electric charges Q_{1} and Q_{2} at a separation r in a vacuum. This Coulomb potential energy is

$$
E_{\mathrm{p}}(r)=\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{4 \pi \varepsilon_{0} r} \quad \begin{align*}
& \text { Coulomb potential energy } \tag{11}\\
& \text { [in a vacuum }]
\end{align*}
$$

Charge is expressed in coulombs (C). The constant ε_{0} (epsilon zero) is the electric constant (or vacuum permittivity), a fundamental constant with the value $8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$. It is conventional (as in eqn 11) to set the potential energy equal to zero at infinite separation of charges.

The total energy of a particle is the sum of its kinetic and potential energies:

$$
\begin{equation*}
E=E_{\mathrm{k}}+E_{\mathrm{p}}, \text { or } E=E_{\mathrm{k}}+V \tag{12}
\end{equation*}
$$

Total energy
A fundamental feature of nature is that energy is conserved; that is, energy can neither be created nor destroyed. Although
energy can be transformed from one form to another, its total is constant.

An alternative way of thinking about the potential energy arising from the interaction of charges is in terms of the potential, which is a measure of the 'potential' of one charge to affect the potential energy of another charge when the second charge is brought into its vicinity. A charge Q_{1} gives rise to a Coulomb potential ϕ_{1} (phi) such that the potential energy of the interaction with a second charge Q_{2} is $Q_{2} \phi_{1}(r)$. Comparison of this expression with eqn 11 shows that

$$
\phi_{1}(r)=\frac{Q_{1}}{4 \pi \varepsilon_{0} r} \quad \begin{align*}
& \text { Coulomb potential } \tag{13}\\
& \text { [in a vacuum] }
\end{align*}
$$

The units of potential are joules per coulomb, JC^{-1}, so when the potential is multiplied by a charge in coulombs, the result is the potential energy in joules. The combination joules per coulomb occurs widely and is called a volt $(\mathrm{V}): 1 \mathrm{~V}=1 \mathrm{JC}^{-1}$.

The language developed here inspires an important alternative energy unit, the electronvolt $(\mathrm{eV}): 1 \mathrm{eV}$ is defined as the potential energy acquired when an electron is moved through a potential difference of 1 V . The relation between electronvolts and joules is

$$
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}
$$

Many processes in chemistry involve energies of a few electronvolts. For example, to remove an electron from a sodium atom requires about 5 eV .

3 Temperature

A key idea of quantum mechanics is that the translational energy of a molecule, atom, or electron that is confined to a region of space, and any rotational or vibrational energy that a molecule possesses, is quantized, meaning that it is restricted to certain discrete values. These permitted energies are called energy levels. The values of the permitted energies depend on the characteristics of the particle (for instance, its mass) and for translation the extent of the region to which it is confined. The allowed energies are widest apart for particles of small mass confined to small regions of space. Consequently, quantization must be taken into account for electrons bound to nuclei in atoms and molecules. It can be ignored for macroscopic bodies, for which the separation of all kinds of energy levels is so small that for all practical purposes their energy can be varied virtually continuously.
Figure 3 depicts the typical energy level separations associated with rotational, vibrational, and electronic motion. The separation of rotational energy levels (in small molecules, about $10^{-21} \mathrm{~J}$, corresponding to about $0.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$) is smaller than that of vibrational energy levels (about $10^{-20}-10^{-19} \mathrm{~J}$, or

Figure 3 The energy level separations typical of four types of system. ($1 \mathrm{zJ}=10^{-21} \mathrm{~J}$; in molar terms, 1 zJ is equivalent to about $0.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.)
$6-60 \mathrm{~kJ} \mathrm{~mol}^{-1}$), which itself is smaller than that of electronic energy levels (about 10^{-18} J, corresponding to about $600 \mathrm{~kJ} \mathrm{~mol}^{-1}$).

(a) The Boltzmann distribution

The continuous thermal agitation that molecules experience in a sample ensures that they are distributed over the available energy levels. This distribution is best expressed in terms of the occupation of states. The distinction between a state and a level is that a given level may be comprised of several states all of which have the same energy. For instance, a molecule might be rotating clockwise with a certain energy, or rotating counterclockwise with the same energy. One particular molecule may be in a state belonging to a low energy level at one instant, and then be excited into a state belonging to a high energy level a moment later. Although it is not possible to keep track of which state each molecule is in, it is possible to talk about the average number of molecules in each state. A remarkable feature of nature is that, for a given array of energy levels, how the molecules are distributed over the states depends on a single parameter, the 'temperature', T.

The population of a state is the average number of molecules that occupy it. The populations, whatever the nature of the states (translational, rotational, and so on), are given by a formula derived by Ludwig Boltzmann and known as the Boltzmann distribution. According to Boltzmann, the ratio of the populations of states with energies ε_{i} and ε_{j} is

$$
\begin{equation*}
\frac{N_{i}}{N_{j}}=\mathrm{e}^{-\left(\varepsilon_{i}-\varepsilon_{j}\right) / k T} \tag{14a}
\end{equation*}
$$

Boltzmann distribution
where k is Boltzmann's constant, a fundamental constant with the value $k=1.381 \times 10^{-23} \mathrm{JK}^{-1}$ and T is the temperature, the parameter that specifies the relative populations of states, regardless of their type. Thus, when $T=0$, the populations of all states other than the lowest state (the 'ground state') of the

Figure 4 The Boltzmann distribution of populations (represented by the horizontal bars) for a system of five states with different energies as the temperature is raised from zero to infinity. Interact with the dynamic version of this graph in the e-book.
molecule are zero. As the value of T is increased (the 'temperature is raised'), the populations of higher energy states increase, and the distribution becomes more uniform. This behaviour is illustrated in Fig. 4 for a system with five states of different energy. As predicted by eqn 14a, as the temperature approaches infinity $(T \rightarrow \infty)$, the states become equally populated.

In chemical applications it is common to use molar energies, $E_{\mathrm{m}, i}$, with $E_{\mathrm{m}, i}=N_{\mathrm{A}} \varepsilon_{i}$, where N_{A} is Avogadro's constant. Then eqn 14a becomes

$$
\begin{equation*}
\frac{N_{i}}{N_{j}}=\mathrm{e}^{-\left(E_{\mathrm{m}, i} / N_{\mathrm{A}}-E_{\mathrm{m}, j} / N_{\mathrm{A}}\right) / k T}=\mathrm{e}^{-\left(E_{\mathrm{m}, i}-E_{\mathrm{m}, \mathrm{j}}\right) / N_{\mathrm{A}} k T}=\mathrm{e}^{-\left(E_{\mathrm{m}, i}-E_{\mathrm{m}, \mathrm{j}}\right) / R T} \tag{14b}
\end{equation*}
$$

where $R=N_{\mathrm{A}} k$. The constant R is known as the 'gas constant'; it appears in expressions of this kind when molar, rather than molecular, energies are specified. Moreover, because it is simply the molar version of the more fundamental Boltzmann constant, it occurs in contexts other than gases.

Brief illustration 5

Methylcyclohexane molecules may exist in one of two conformations, with the methyl group in either an equatorial or axial position. The equatorial form lies $6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower in energy than the axial form. The relative populations of molecules in the axial and equatorial states at 300 K are therefore

$$
\begin{aligned}
& \frac{N_{\text {axial }}}{N_{\text {equatorial }}}=\mathrm{e}^{-\left(E_{\text {maxial }}-E_{\text {m.equatoraial }}\right) / R T} \\
&\left.=\mathrm{e}^{-\left(6.0 \times 10^{3} \mathrm{Jmol}\right.} \mathrm{mol}^{-1}\right) /(8.3145 \mathrm{~J} \mathrm{~K} \\
&\left.\mathrm{K}^{-1} \mathrm{~mol}^{-1}\right) \times(300 \mathrm{~K}) \\
&=0.090
\end{aligned}
$$

The number of molecules in an axial conformation is therefore just 9 per cent of those in the equatorial conformation.

The important features of the Boltzmann distribution to bear in mind are:

- The distribution of populations is an exponential function of energy and the temperature. As the temperature is increased, states with higher energy become progressively more populated.
- States closely spaced in energy compared to $k T$ are more populated than states that are widely spaced compared to $k T$.

The energy spacings of translational and rotational states are typically much less than $k T$ at room temperature. As a result, many translational and rotational states are populated. In contrast, electronic states are typically separated by much more than $k T$. As a result, only the ground electronic state of a molecule is occupied at normal temperatures. Vibrational states are widely separated in small, stiff molecules and only the ground vibrational state is populated. Large and flexible molecules are also found principally in their ground vibrational state, but might have a few higher energy vibrational states populated at normal temperatures.

(b) The equipartition theorem

For gases consisting of non-interacting particles it is often possible to calculate the average energy associated with each type
of motion by using the equipartition theorem. This theorem arises from a consideration of how the energy levels associated with different kinds of motion are populated according to the Boltzmann distribution. The theorem states that

At thermal equilibrium, the average value of each quadratic contribution to the energy is $\frac{1}{2} k T$.

A 'quadratic contribution' is one that is proportional to the square of the momentum or the square of the displacement from an equilibrium position. For example, the kinetic energy of a particle travelling in the x-direction is $E_{\mathrm{k}}=p_{x}^{2} / 2 m$. This motion therefore makes a contribution of $\frac{1}{2} k T$ to the energy.

The energy of vibration of atoms in a chemical bond has two quadratic contributions. One is the kinetic energy arising from the back and forth motion of the atoms. Another is the potential energy which, for the harmonic oscillator, is $E_{\mathrm{p}}=\frac{1}{2} k_{\mathrm{f}} x^{2}$ and is a second quadratic contribution. Therefore, the total average energy is $\frac{1}{2} k T+\frac{1}{2} k T=k T$.
The equipartition theorem applies only if many of the states associated with a type of motion are populated. At temperatures of interest to chemists this condition is always met for translational motion, and is usually met for rotational motion. Typically, the separation between vibrational and electronic states is greater than for rotation or translation, and as only a few states are occupied (often only one, the ground state), the equipartition theorem is unreliable for these types of motion.

Checklist of concepts

1. Newton's second law of motion states that the rate of change of momentum is equal to the force acting on the particle.2. Work is done in order to achieve motion against an opposing force. Energy is the capacity to do work.3. The kinetic energy of a particle is the energy it possesses as a result of its motion.4. The potential energy of a particle is the energy it possesses as a result of its position.5. The total energy of a particle is the sum of its kinetic and potential energies.6. The Coulomb potential energy between two charges separated by a distance r varies as $1 / r$.
7. The energy levels of confined particles are quantized, as are those of rotating or vibrating molecules.8. The Boltzmann distribution is a formula for calculating the relative populations of states of various energies.9. The equipartition theorem states that for a sample at thermal equilibrium the average value of each quadratic contribution to the energy is $\frac{1}{2} k T$.

Checklist of equations

Property	Equation	Comment	Equation number
Component of velocity in x direction	$v_{x}=\mathrm{d} x / \mathrm{d} t$	Definition; likewise for y and z	1a
Component of linear momentum in x direction	$p_{x}=m v_{x}$	Definition; likewise for y and z	2
Moment of inertia	$I=m r^{2}$	Point particle	3a
	$I=\sum_{i} m_{i} r_{i}^{2}$	Molecule	3b
Angular momentum	$J=I \omega$		4
Equation of motion	$F_{x}=\mathrm{d} p_{x} / \mathrm{d} t$	Motion along x-direction	5a
	$F=\mathrm{d} p / \mathrm{d} t$	Newton's second law of motion	5 b
	$T=\mathrm{d} / \mathrm{d} t$	Rotational motion	6
Work opposing a force in the x direction	$\mathrm{d} w=-F_{x} \mathrm{~d} x$	Definition	7 a
Kinetic energy	$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$	Definition; v is the speed	8a
Potential energy and force	$F_{x}=-\mathrm{d} V / \mathrm{d} x$	One dimension	9
Coulomb potential energy	$E_{\mathrm{p}}(r)=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r$	In a vacuum	11
Coulomb potential	$\phi_{1}(r)=Q_{1} / 4 \pi \varepsilon_{0} r$	In a vacuum	13
Boltzmann distribution	$N_{i} / N_{j}=\mathrm{e}^{-\left(\varepsilon_{i}-\varepsilon_{j}\right) / k T}$		14a

Atkins'
 PHYSICAL CHEMISTRY

FOCUS 1

The properties of gases

A gas is a form of matter that fills whatever container it occupies. This Focus establishes the properties of gases that are used throughout the text.

1A The perfect gas

This Topic is an account of an idealized version of a gas, a 'perfect gas', and shows how its equation of state may be assembled from the experimental observations summarized by Boyle's law, Charles's law, and Avogadro's principle.
1A. 1 Variables of state; 1A. 2 Equations of state

1B The kinetic model

A central feature of physical chemistry is its role in building models of molecular behaviour that seek to explain observed phenomena. A prime example of this procedure is the development of a molecular model of a perfect gas in terms of a collection of molecules (or atoms) in ceaseless, essentially random motion. As well as accounting for the gas laws, this model can be used to predict the average speed at which molecules move in a gas, and its dependence on temperature. In combination with the Boltzmann distribution (see Energy: A first look), the model can also be used to predict the spread of molecular speeds and its dependence on molecular mass and temperature.

[^0]
1C Real gases

The perfect gas is a starting point for the discussion of properties of all gases, and its properties are invoked throughout thermodynamics. However, actual gases, 'real gases', have properties that differ from those of perfect gases, and it is necessary to be able to interpret these deviations and build the effects of molecular attractions and repulsions into the model. The discussion of real gases is another example of how initially primitive models in physical chemistry are elaborated to take into account more detailed observations.
1C. 1 Deviations from perfect behaviour; 1C. 2 The van der Waals equation

What is an application of this material?

The perfect gas law and the kinetic theory can be applied to the study of phenomena confined to a reaction vessel or encompassing an entire planet or star. In Impact 1, accessed via the e-book, the gas laws are used in the discussion of meteorological phenomena-the weather. Impact 2, accessed via the e-book, examines how the kinetic model of gases has a surprising application: to the discussion of dense stellar media, such as the interior of the Sun.

[^1]
TOPIC 1A The perfect gas

Why do you need to know this material?

The relation between the pressure, volume, and temperature of a perfect gas is used extensively in the development of quantitative theories about the physical and chemical behaviour of real gases. It is also used extensively throughout thermodynamics.

What is the key idea?

The perfect gas law, which describes the relation between the pressure, volume, temperature, and amount of substance, is a limiting law that is obeyed increasingly well as the pressure of a gas tends to zero.

What do you need to know already?

You need to know how to handle quantities and units in calculations, as reviewed in the Resource section.

The properties of gases were among the first to be established quantitatively (largely during the seventeenth and eighteenth centuries) when the technological requirements of travel in balloons stimulated their investigation. This Topic reviews how the physical state of a gas is described using variables such as pressure and temperature, and then discusses how these variables are related.

1A. 1 Variables of state

The physical state of a sample of a substance, its physical condition, is defined by its physical properties. Two samples of the same substance that have the same physical properties are said to be 'in the same state'. The variables of state, the variables needed to specify the state of a system, are the amount of substance it contains, n; the volume it occupies, V; the pressure, p; and the temperature, T.

1A.1(a) Pressure and volume

The pressure, p, that an object experiences is defined as the force, F, applied divided by the area, A, to which that force is applied. A gas exerts a pressure on the walls of its container as a result of the collisions between the molecules and the walls:
these collisions are so numerous that the force, and hence the pressure, is steady.

The SI unit of pressure is the pascal, Pa , defined as $1 \mathrm{~Pa}=$ $1 \mathrm{Nm}^{-2}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$. Several other units are still widely used, and the relations between them are given in Table 1A.1. Because many physical properties depend on the pressure acting on a sample, it is appropriate to select a certain value of the pressure to report their values. The standard pressure, p^{\ominus}, for reporting physical quantities is currently defined as $p^{\ominus}=1$ bar (that is, $10^{5} \mathrm{~Pa}$) exactly. This pressure is close to, but not the same as, 1 atm , which is typical for everyday conditions.

Consider the arrangement shown in Fig. 1A. 1 where two gases in separate containers share a common movable wall. In Fig. 1A.1a the gas on the left is at higher pressure than that on the right, and so the force exerted on the wall by the gas on the left is greater than that exerted by the gas on the right. As a result, the wall moves to the right, the pressure on the left

Table 1A. 1 Pressure units*

Name	Symbol	Value
pascal	Pa	$1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}, 1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
bar	bar	$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
atmosphere	atm	$1 \mathrm{~atm}=101.325 \mathrm{kPa}$
torr	Torr	$1 \mathrm{Torr}=(101325 / 760) \mathrm{Pa}=133.32 \ldots \mathrm{~Pa}$
millimetres of mercury	mmHg	$1 \mathrm{mmHg}=133.322 \ldots \mathrm{~Pa}$
pounds per square inch	psi	$1 \mathrm{psi}=6.894757 \ldots \mathrm{kPa}$

* Values in bold are exact.

Figure 1A. 1 (a) When a region of high pressure is separated from a region of low pressure by a movable wall, the wall will be pushed into the low pressure region until the pressures are equal. (b) When the two pressures are identical, the wall will stop moving. At this point there is mechanical equilibrium between the two regions.
decreases, and that on the right increases. Eventually (as in Fig. 1A.1b) the two pressures become equal and the wall no longer moves. This condition of equality of pressure on either side of a movable wall is a state of mechanical equilibrium between the two gases.

The pressure exerted by the atmosphere is measured with a barometer. The original version of a barometer (which was invented by Torricelli, a student of Galileo) involved taking a glass tube, sealed at one end, filling it with mercury and then up-ending it (without letting in any air) into a bath of mercury. The pressure of the atmosphere acting on the surface of the mercury in the bath supports a column of mercury of a certain height in the tube: the pressure at the base of the column, due to the mercury in the tube, is equal to the atmospheric pressure. As the atmospheric pressure changes, so does the height of the column.

The pressure of gas in a container, and also now the atmosphere, is measured by using a pressure gauge, which is a device with properties that respond to pressure. For instance, in a Bayard-Alpert pressure gauge the molecules present in the gas are ionized and the resulting current of ions is interpreted in terms of the pressure. In a capacitance manometer, two electrodes form a capacitor. One electrode is fixed and the other is a diaphragm which deflects as the pressure changes. This deflection causes a change in the capacitance, which is measured and interpreted as a pressure. Certain semiconductors also respond to pressure and are used as transducers in solid-state pressure gauges, including those in mobile phones (cell phones).

The volume, V, of a gas is a measure of the extent of the region of space it occupies. The SI unit of volume is m^{3}.

1A.1(b) Temperature

The temperature is formally a property that determines in which direction energy will flow as heat when two samples are placed in contact through thermally conducting walls: energy flows from the sample with the higher temperature to the sample with the lower temperature. The symbol T denotes the thermodynamic temperature, which is an absolute scale with $T=0$ as the lowest point. Temperatures above $T=0$ are expressed by using the Kelvin scale, in which the gradations of temperature are expressed in kelvins (K ; not ${ }^{\circ} \mathrm{K}$). Until 2019, the Kelvin scale was defined by setting the triple point of water (the temperature at which ice, liquid water, and water vapour are in mutual equilibrium) at exactly 273.16 K . The scale has now been redefined by referring it to the more precisely known value of the Boltzmann constant.

There are many devices used to measure temperature. They vary from simple devices that measure the expansion of a liquid along a tube, as commonly found in laboratories, to electronic devices where the resistance of a material or the potential difference developed at a junction is related to the temperature.

The Celsius scale of temperature is commonly used to express temperatures. In this text, temperatures on the Celsius scale are denoted θ (theta) and expressed in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$. The thermodynamic and Celsius temperatures are related by the exact expression

$$
T / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273.15 \quad \begin{array}{ll}
\text { Celsius scale } \tag{1A.1}\\
\text { [definition] }
\end{array}
$$

This relation is the definition of the Celsius scale in terms of the more fundamental Kelvin scale. It implies that a difference in temperature of $1^{\circ} \mathrm{C}$ is equivalent to a difference of 1 K .

The lowest temperature on the thermodynamic temperature scale is written $T=0$, not $T=0 \mathrm{~K}$. This scale is absolute, and the lowest temperature is 0 regardless of the size of the divisions on the scale (just as zero pressure is denoted $p=0$, regardless of the size of the units, such as bar or pascal). However, it is appropriate to write $0^{\circ} \mathrm{C}$ because the Celsius scale is not absolute.

1A.1(c) Amount

In day-to-day conversation 'amount' has many meanings but in physical science it has a very precise definition. The amount of substance, n, is a measure of the number of specified entities present in the sample; these entities may be atoms, or molecules, or formula units. The SI unit of amount of substance is the mole (mol). The amount of substance is commonly referred to as the 'chemical amount' or simply 'amount'.

Until 2019 the mole was defined as the number of carbon atoms in exactly 12 g of carbon-12. However, it has been redefined such that 1 mol of a substance contains exactly $6.02214076 \times 10^{23}$ entities. The number of entities per mole is called Avogadro's constant, N_{A}. It follows from the definition of the mole that $N_{\mathrm{A}}=6.02214076 \times 10^{23} \mathrm{~mol}^{-1}$. Note that N_{A} is a constant with units, not a pure number. Also, it is not correct to specify amount as the 'number of moles': the correct phrase is 'amount in moles'.

The amount of substance is related to the mass, m, of the substance through the molar mass, M, which is the mass per mole of its atoms, its molecules, or its formula units. The SI unit of molar mass is $\mathrm{kg} \mathrm{mol}^{-1}$ but it is more common to use $\mathrm{g} \mathrm{mol}^{-1}$. The amount of substance of specified entities in a sample can readily be calculated from its mass by using

$$
\begin{equation*}
n=\frac{m}{M} \tag{1A.2}
\end{equation*}
$$

Amount of substance

1A.1(d) Intensive and extensive properties

Suppose a sample is divided into smaller samples. If a property of the original sample has a value that is equal to the sum of its values in all the smaller samples, then it is said to be an extensive property. Amount, mass, and volume are examples of extensive properties. If a property retains the same value as in
the original sample for all the smaller samples, then it is said to be intensive. Temperature and pressure are examples of intensive properties.
The value of a property X divided by the amount n gives the molar value of that property X_{m} : that is, $X_{\mathrm{m}}=X / n$. All molar properties are intensive, whereas X and n are both extensive. The mass density, $\rho=m / V$, is also intensive.

Example 1A. 1 Specifying the variables of state

When released into a certain vessel, 0.560 mg of nitrogen gas is observed to exert a pressure of 10.4 Torr at a temperature of $25.2{ }^{\circ} \mathrm{C}$. Express the pressure in pascals (Pa) and the thermodynamic temperature in kelvins (K). Also calculate the amount of N_{2}, and the number of N_{2} molecules present. Take the molar mass of N_{2} as $14.01 \mathrm{~g} \mathrm{~mol}^{-1}$.

Collect your thoughts The SI unit of pressure is Pa , and the conversion from Torr to Pa is given in Table 1A.1; the conversion of ${ }^{\circ} \mathrm{C}$ to K is given by eqn 1A.1. The amount is computed using eqn 1A.2.

The solution From the table 1 Torr $=133.32 \ldots \mathrm{~Pa}$, so a pressure of 10.4 Torr is converted to Pa through

$$
p=(10.4 \text { Torr }) \times\left(133.32 \ldots \mathrm{~Pa} \mathrm{Torr}^{-1}\right)=1.39 \times 10^{3} \mathrm{~Pa}
$$

Note the inclusion of units for each quantity, and the way in which the units cancel to give the required result. The temperature in ${ }^{\circ} \mathrm{C}$ is converted to K using eqn 1A.1.

$$
T / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273.15=\left(25.2^{\circ} \mathrm{C}\right) /{ }^{\circ} \mathrm{C}+273.15=298
$$

Thus $T=298 \mathrm{~K}$. The amount is calculated by using eqn 1A.2: note the conversion of the mass from mg to g so as to match the units of the molar mass.

$$
n=\frac{m}{M}=\frac{0.560 \times 10^{-3} \mathrm{~g}}{14.01 \mathrm{~g} \mathrm{~mol}^{-1}}=3.99 \ldots \times 10^{-5} \mathrm{~mol}=4.00 \times 10^{-5} \mathrm{~mol}
$$

Here the intermediate result is truncated at (not rounded to) three figures, but the final result is rounded to three figures.

The number of molecules is found by multiplying the amount by Avogadro's constant.

$$
\begin{aligned}
N & =n N_{\mathrm{A}}=\left(3.99 \ldots \times 10^{-5} \mathrm{~mol}\right) \times\left(6.0221 \times 10^{23} \mathrm{~mol}^{-1}\right) \\
& =2.41 \times 10^{19}
\end{aligned}
$$

The result, being a pure number, is dimensionless.
Self-test 1A. 1 Express the pressure in bar and in atm.

Exercises

E1A. 1 Express (i) 108 kPa in torr and (ii) 0.975 bar in atmospheres.
E1A.2 What mass of methanol (molar mass $32.04 \mathrm{~g} \mathrm{~mol}^{-1}$) contains the same number of molecules as 1.00 g of ethanol (molar mass $46.07 \mathrm{~g} \mathrm{~mol}^{-1}$)?

1A.2 Equations of state

Although in principle the state of a pure substance is specified by giving the values of n, V, p, and T, it has been established experimentally that it is sufficient to specify only three of these variables because doing so fixes the value of the fourth variable. That is, it is an experimental fact that each substance is described by an equation of state, an equation that interrelates these four variables.

The general form of an equation of state is

$$
\begin{equation*}
p=f(T, V, n) \quad \text { General form of an equation of state } \tag{1A.3}
\end{equation*}
$$

This equation means that if the values of n, T, and V are known for a particular substance, then the pressure has a fixed value. Each substance is described by its own equation of state, but the explicit form of the equation is known in only a few special cases. One very important example is the equation of state of a 'perfect gas', which has the form $p=n R T / V$, where R is a constant independent of the identity of the gas.

1A.2(a) The empirical basis of the perfect gas law

The equation of state of a perfect gas was established by combining a series of empirical laws that arose from experimental observations. These laws can be summarized as

> Boyle's law:
> Charles's law:

$$
\begin{aligned}
p V & =\text { constant, at constant } n, T \\
V & =\text { constant } \times T, \text { at constant } n, p \\
p & =\text { constant } \times T, \text { at constant } n, V
\end{aligned}
$$

Avogadro's principle: $\quad V=$ constant $\times n$, at constant p, T
Boyle's and Charles's laws are strictly true only in the limit that the pressure goes to zero $(p \rightarrow 0)$: they are examples of a limiting law, a law that is strictly true only in a certain limit. However, these laws are found to be reasonably reliable at normal pressures ($p \approx 1$ bar) and are used throughout chemistry. Avogadro's principle is so-called because it supposes that the system consists of molecules whereas a law is strictly a summary of observations and independent of any assumed model.
Figure 1A. 2 depicts the variation of the pressure of a sample of gas as the volume is changed. Each of the curves in the graph corresponds to a single temperature and hence is called an isotherm. According to Boyle's law, the isotherms of gases are hyperbolas (curves obtained by plotting y against x with $x y=$ constant, or $y=\operatorname{constant} / x$). An alternative depiction, a plot of pressure against $1 /$ volume, is shown in Fig. 1A.3; in such a plot the isotherms are straight lines because p is proportional to $1 / V$. Note that all the lines extrapolate to the point $p=0,1 / V=0$ but have slopes that depend on the temperature.

The linear variation of volume with temperature summarized by Charles's law is illustrated in Fig. 1A.4. The lines in this

Figure 1A. 2 The pressure-volume dependence of a fixed amount of gas that obeys Boyle's law. Each curve is for a different temperature and is called an isotherm; each isotherm is a hyperbola ($p V=$ constant).

Figure 1A. 3 Straight lines are obtained when the pressure of a gas obeying Boyle's law is plotted against $1 / V$ at constant temperature. These lines extrapolate to zero pressure at $1 / V=0$.
illustration are examples of isobars, or lines showing the variation of properties at constant pressure. All these isobars extrapolate to the point $V=0, T=0$ and have slopes that depend on the pressure. Figure 1A. 5 illustrates the linear variation of pressure with temperature. The lines in this diagram are isochores, or lines showing the variation of properties at constant volume, and they all extrapolate to $p=0, T=0$.

The empirical observations summarized by Boyle's and Charles's laws and Avogadro's principle can be combined into a single expression:

$$
p V=\text { constant } \times n T
$$

This expression is consistent with Boyle's law, $p V=$ constant when n and T are constant. It is also consistent with both forms of Charles's law: $p \propto T$ when n and V are held constant, and $V \propto T$ when n and p are held constant. The expression also agrees with Avogadro's principle, $V \propto n$ when p and T are constant. The constant of proportionality, which is found

Figure 1A. 4 The volume-temperature dependence of a fixed amount of gas that obeys Charles's law. Each line is for a different pressure and is called an isobar. Each isobar is a straight line and extrapolates to zero volume at $T=0$, corresponding to $\theta=-273.15^{\circ} \mathrm{C}$.

Figure 1A. 5 The pressure-temperature dependence of a fixed amount of gas that obeys Charles's law. Each line is for a different volume and is called an isochore. Each isochore is a straight line and extrapolates to zero pressure at $T=0$.
experimentally to be the same for all gases, is denoted R and called the (molar) gas constant. The resulting expression

$$
\begin{equation*}
p V=n R T \tag{1A.4}
\end{equation*}
$$

Perfect gaslaw
is the perfect gas law (or perfect gas equation of state). A gas that obeys this law exactly under all conditions is called a perfect gas (or ideal gas). Although the term 'ideal gas' is used widely, in this text we prefer to use 'perfect gas' because there is an important and useful distinction between ideal and perfect. The distinction is that in an 'ideal system' all the interactions between molecules are the same; in a 'perfect system', not only are they the same but they are also zero.

For a real gas, any actual gas, the perfect gas law is approximate, but the approximation becomes better as the pressure of the gas approaches zero. In the limit that the pressure goes to zero, $p \rightarrow 0$, the equation is exact. The value of the gas constant R can be determined by evaluating $R=p V / n T$ for a gas in the limit of zero pressure (to guarantee that it is behaving

Figure 1A.6 A region of the p, V, T surface of a fixed amount of perfect gas molecules. The points forming the surface represent the only states of the gas that can exist.

Figure 1A. 7 Sections through the surface shown in Fig. 1A. 6 at constant temperature give the isotherms shown in Fig. 1A.2. Sections at constant pressure give the isobars shown in Fig. 1A.4. Sections at constant volume give the isochores shown in Fig. 1A.5.
perfectly). As remarked in Energy: A first look, the modern procedure is to note that $R=N_{\mathrm{A}} k$, where k is Boltzmann's constant and N_{A} has its newly defined value, as indicated earlier.

The surface in Fig. 1A. 6 is a plot of the pressure of a fixed amount of perfect gas molecules against its volume and thermodynamic temperature as given by eqn 1A.4. The surface depicts the only possible states of a perfect gas: the gas cannot exist in states that do not correspond to points on the surface. Figure 1A. 7 shows how the graphs in Figs. 1A.2, 1A.4, and 1A. 5 correspond to sections through the surface.

Example 1A. 2
 Using the perfect gas law

Nitrogen gas is introduced into a vessel of constant volume at a pressure of 100 atm and a temperature of 300 K . The temperature is then raised to 500 K . What pressure would the gas then exert, assuming that it behaved as a perfect gas?

Collect your thoughts The pressure is expected to be greater on account of the increase in temperature. The perfect gas law in the form $p V / n T=R$ implies that if the conditions are changed
from one set of values to another, then because $p V / n T$ is equal to a constant, the two sets of values are related by the 'combined gas law'

$$
\begin{equation*}
\frac{p_{1} V_{1}}{n_{1} T_{1}}=\frac{p_{2} V_{2}}{n_{2} T_{2}} \tag{1A.5}
\end{equation*}
$$

Combined gas law
In this case the volume is the same before and after heating, so $V_{1}=V_{2}$ and these terms cancel. Likewise the amount does not change upon heating, so $n_{1}=n_{2}$ and these terms also cancel.

The solution Cancellation of the volumes and amounts on each side of the combined gas law results in

$$
\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}
$$

which can be rearranged into

$$
p_{2}=\frac{T_{2}}{T_{1}} \times p_{1}
$$

Substitution of the data then gives

$$
p_{2}=\frac{500 \mathrm{~K}}{300 \mathrm{~K}} \times(100 \mathrm{~atm})=167 \mathrm{~atm}
$$

Self-test 1A. 2 What temperature would be needed for the same sample to exert a pressure of 300 atm ?

The molecular explanation of Boyle's law is that if a sample of gas is compressed to half its volume, then twice as many molecules strike the walls in a given period of time than before it was compressed. As a result, the average force exerted on the walls is doubled. Hence, when the volume is halved the pressure of the gas is doubled, and $p V$ is a constant. Boyle's law applies to all gases regardless of their chemical identity (provided the pressure is low) because at low pressures the average separation of molecules is so great that they exert no influence on one another and hence travel independently.

The molecular explanation of Charles's law lies in the fact that raising the temperature of a gas increases the average speed of its molecules. The molecules collide with the walls more frequently and with greater impact. Therefore they exert a greater pressure on the walls of the container. For a quantitative account of these relations, see Topic 1B.

1A.2(b) The value of the gas constant

If the pressure, volume, amount, and temperature are expressed in their SI units the gas constant R has units $\mathrm{Nm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ which, because $1 \mathrm{~J}=1 \mathrm{Nm}$, can be expressed in terms of $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The currently accepted value of R is $8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Other combinations of units for pressure and volume result in different values and units for the gas constant. Some commonly encountered combinations are given in Table 1A.2.

The perfect gas law is of the greatest importance in physical chemistry because it is used to derive a wide range of relations

Table 1A. 2 The (molar) gas constant*

R	
8.31447	$\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
8.20574×10^{-2}	$\mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
8.31447×10^{-2}	$\mathrm{dm}^{3} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
8.31447	$\mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
62.364	$\mathrm{dm}^{3} \mathrm{Torr} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
1.98721	$\mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

* The gas constant is now defined as $R=N_{\mathrm{A}} k$, where N_{A} is Avogadro's constant and k is Boltzmann's constant.
found throughout thermodynamics. It is also of considerable practical utility for calculating the properties of a perfect gas under a variety of conditions. For instance, the molar volume, $V_{\mathrm{m}}=V / n$, of a perfect gas under the conditions called standard ambient temperature and pressure (SATP), defined as 298.15 K and 1 bar, is calculated as $24.789 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$. An earlier definition, standard temperature and pressure (STP), was $0^{\circ} \mathrm{C}$ and 1 atm ; at STP, the molar volume of a perfect gas under these conditions is $22.414 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.

1A.2(c) Mixtures of gases

When dealing with gaseous mixtures, it is often necessary to know the contribution that each component makes to the total pressure of the sample. The partial pressure, p_{J}, of a gas J in a mixture (any gas, not just a perfect gas), is defined as

$$
p_{\mathrm{J}}=x_{\mathrm{J}} p \quad l \begin{align*}
& \text { Partial pressure } \tag{1A.6}\\
& \text { [definition] }
\end{align*}
$$

where x_{J} is the mole fraction of the component J, the amount of J expressed as a fraction of the total amount of molecules, n, in the sample:

$$
x_{\mathrm{J}}=\frac{n_{\mathrm{J}}}{n} \quad n=n_{\mathrm{A}}+n_{\mathrm{B}}+\cdots \quad \begin{align*}
& \text { Mole fraction } \tag{1A.7}\\
& \text { [definition] }
\end{align*}
$$

When no J molecules are present, $x_{\mathrm{J}}=0$; when only J molecules are present, $x_{\mathrm{J}}=1$. It follows from the definition of x_{J} that, whatever the composition of the mixture, $x_{\mathrm{A}}+x_{\mathrm{B}}+\cdots=1$ and therefore that the sum of the partial pressures is equal to the total pressure:

$$
\begin{equation*}
p_{\mathrm{A}}+p_{\mathrm{B}}+\cdots=\left(x_{\mathrm{A}}+x_{\mathrm{B}}+\cdots\right) p=p \tag{1A.8}
\end{equation*}
$$

This relation is true for both real and perfect gases.
When all the gases are perfect, the partial pressure as defined in eqn 1A. 6 is also the pressure that each gas would exert if it occupied the same container alone at the same temperature. The latter is the original meaning of 'partial pressure'. That identification was the basis of the original formulation of Dalton's law:

The pressure exerted by a mixture of gases is the sum of the pressures that each one would exert if it occupied the container alone.

This law is valid only for mixtures of perfect gases, so it is not used to define partial pressure. Partial pressure is defined by eqn 1A.6, which is valid for all gases.

Example 1A. 3

Calculating partial pressures

The mass percentage composition of dry air at sea level is approximately $\mathrm{N}_{2}: 75.5 ; \mathrm{O}_{2}: 23.2$; Ar: 1.3. What is the partial pressure of each component when the total pressure is 1.20 atm ?

Collect your thoughts Partial pressures are defined by eqn 1A.6. To use the equation, first calculate the mole fractions of the components by using eqn 1A. 7 and the fact that the amount of atoms or molecules J of molar mass M_{J} in a sample of mass m_{J} is $n_{\mathrm{J}}=m_{\mathrm{J}} / M_{\mathrm{J}}$. The mole fractions are independent of the total mass of the sample, so choose the latter to be exactly 100 g (which makes the conversion from mass percentages very straightforward). Thus, the mass of N_{2} present is 75.5 per cent of 100 g , which is 75.5 g .

The solution The amounts of each type of atom or molecule present in 100 g of air, in which the masses of $\mathrm{N}_{2}, \mathrm{O}_{2}$, and Ar are $75.5 \mathrm{~g}, 23.2 \mathrm{~g}$, and 1.3 g , respectively, are

$$
\begin{aligned}
& n\left(\mathrm{~N}_{2}\right)=\frac{75.5 \mathrm{~g}}{28.02 \mathrm{~g} \mathrm{~mol}^{-1}}=\frac{75.5}{28.02} \mathrm{~mol}=2.69 \mathrm{~mol} \\
& n\left(\mathrm{O}_{2}\right)=\frac{23.2 \mathrm{~g}}{32.00 \mathrm{~g} \mathrm{~mol}^{-1}}=\frac{23.2}{32.00} \mathrm{~mol}=0.725 \mathrm{~mol} \\
& n(\mathrm{Ar})=\frac{1.3 \mathrm{~g}}{39.95 \mathrm{~g} \mathrm{~mol}^{-1}}=\frac{1.3}{39.95} \mathrm{~mol}=0.033 \mathrm{~mol}
\end{aligned}
$$

The total is 3.45 mol . The mole fractions are obtained by dividing each of the above amounts by 3.45 mol and the partial pressures are then obtained by multiplying the mole fraction by the total pressure (1.20 atm):

	N_{2}	O_{2}	Ar
Mole fraction:	0.780	0.210	0.0096
Partial pressure/atm:	0.936	0.252	0.012

Self-test 1A. 3 When carbon dioxide is taken into account, the mass percentages are $75.52\left(\mathrm{~N}_{2}\right), 23.15\left(\mathrm{O}_{2}\right), 1.28(\mathrm{Ar})$, and $0.046\left(\mathrm{CO}_{2}\right)$. What are the partial pressures when the total pressure is 0.900 atm ?

Exercises

E1A.3 Could 131 g of xenon gas in a vessel of volume $1.0 \mathrm{dm}^{3}$ exert a pressure of 20 atm at $25^{\circ} \mathrm{C}$ if it behaved as a perfect gas? If not, what pressure would it exert?

E1A. 4 A perfect gas undergoes isothermal compression, which reduces its volume by $2.20 \mathrm{dm}^{3}$. The final pressure and volume of the gas are 5.04 bar and $4.65 \mathrm{dm}^{3}$, respectively. Calculate the original pressure of the gas in (i) bar, (ii) atm.

E1A. 5 At $500{ }^{\circ} \mathrm{C}$ and 93.2 kPa , the mass density of sulfur vapour is $3.710 \mathrm{~kg} \mathrm{~m}^{-3}$. What is the molecular formula of sulfur under these conditions?

[^0]: 1B. 1 The model; 1B. 2 Collisions

[^1]: - Go to the e-book for videos that feature the derivation and interpretation of equations, and applications of this material.

