OXFORD

ATKINS' PHYSICAL CHEMISTRY

PETER ATKINS | JULIO DE PAULA | JAMES KEELER

Enhanced E-book

Useful relations

At 298.15 K

RT	$2.4790kJmol^{-1}$	RT/F	25.693 mV
(<i>RT/F</i>) ln 10	59.160 mV	kT/hc	$207.225cm^{-1}$
kT	25.693 meV	$V^{\scriptscriptstyle \ominus}_{\scriptscriptstyle \mathrm{m}}$	2.4790×10^{-2}
			$m^3 mol^{-1}$
			$24.790 \text{ dm}^3 \text{ mol}^{-1}$

Selected units*

1 N	$1 \text{kg} \text{m} \text{s}^{-2}$	1 J	$1 kg m^2 s^{-2}$
1 Pa	$1 kg m^{-1} s^{-2}$	$1\mathrm{W}$	1 J s^{-1}
$1\mathrm{V}$	1 J C ⁻¹	1 A	$1 \mathrm{C}\mathrm{s}^{-1}$
1 T	$1 \text{kg} \text{s}^{-2} \text{A}^{-1}$	1 P	$10^{-1}kgm^{-1}s^{-1}$
1 S	$1\Omega^{\!-\!1}\!=\!1AV^{\!-\!1}$		

* For multiples (milli, mega, etc), see the Resource section

Conversion factors

 $\theta/^{\circ}C = T/K - 273.15^{*}$

1 eV	1.602 177×10 ⁻¹⁹ J	1 cal	4.184* J
	96.485 kJ mol ⁻¹		
	$8065.5cm^{-1}$		
1 atm	101.325* kPa	$1\mathrm{cm}^{-1}$	$1.9864 \times 10^{-23} \text{ J}$
	760* Torr		
1 D	$3.335~64 \times 10^{-30}$ C m	1 Å	$10^{-10}{\rm m}^{*}$

* Exact value

Mathematical relations

 $\pi = 3.14159265359...$ e = 2.71828182846...

Logarithms and exponentials

$\ln x + \ln y + \ldots = \ln xy \ldots$	$\ln x - \ln y = \ln(x/y)$
$a \ln x = \ln x^a$	$\ln x = (\ln 10) \log x$
	$=(2.302585)\log x$
$e^{x}e^{y}e^{z}\dots=e^{x+y+z+\dots}$	$e^{x}/e^{y} = e^{x-y}$
$(e^x)^a = e^{ax}$	$e^{\pm ix} = \cos x \pm i \sin x$

Series expansions

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \cdots$$

$$\frac{1}{1+x} = 1 - x + x^{2} - \frac{1}{1-x} = 1 + x + x^{2} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots \qquad \cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots$$

Derivatives; for Integrals, see the *Resource* section

$$d(f+g) = df + dg \qquad d(fg) = f dg + g df$$

$$d\frac{f}{g} = \frac{1}{g} df - \frac{f}{g^2} dg \qquad \frac{df}{dt} = \frac{df}{dg} \frac{dg}{dt} \quad \text{for} \quad f = f(g(t))$$

$$\left(\frac{\partial y}{\partial x}\right)_z = 1/\left(\frac{\partial x}{\partial y}\right)_z \qquad \left(\frac{\partial y}{\partial x}\right)_z \left(\frac{\partial x}{\partial z}\right)_y \left(\frac{\partial z}{\partial y}\right)_x = -1$$

$$\frac{dx^n}{dx} = nx^{n-1} \qquad \frac{de^{ax}}{dx} = ae^{ax} \qquad \frac{d\ln(ax)}{dx} = \frac{1}{x}$$

$$df = g(x, y)dx + h(x, y)dy \text{ is exact if } \left(\frac{\partial g}{\partial y}\right)_x = \left(\frac{\partial h}{\partial x}\right)_y$$

Greek alphabet*

Α, α	alpha	Ι, ι	iota	Ρ, ρ	rho
Β, β	beta	Κ, κ	kappa	Σ, σ	sigma
Γ, γ	gamma	Λ, λ	lambda	Τ, τ	tau
Δ, δ	delta	Μ, μ	mu	Υ, υ	upsilon
Ε, ε	epsilon	Ν, ν	nu	Φ, φ	phi
Ζ, ζ	zeta	Ξ, ξ	xi	Χ, χ	chi
Η, η	eta	О, о	omicron	Ψ, ψ	psi
Θ, θ	theta	Π, π	pi	Ω, ω	omega

* Oblique versions (α , β , ...) are used to denote physical observables.

FUNDAMENTAL CONSTANTS

Constant	Symbol		Value	
			Power of 10	Units
Speed of light	с	2.997 924 58*	108	$m s^{-1}$
Elementary charge	е	1.602 176 634*	10 ⁻¹⁹	С
Planck's constant	h	6.62607015	10 ⁻³⁴	Js
	$\hbar = h/2\pi$	1.054571817	10 ⁻³⁴	Js
Boltzmann's constant	k	1.380649*	10 ⁻²³	J K ⁻¹
Avogadro's constant	$N_{_{ m A}}$	6.02214076	10 ²³	mol^{-1}
Gas constant	$R = N_A k$	8.314462		$J \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday's constant	$F = N_A e$	9.648 533 21	10^{4}	$\mathrm{C}\mathrm{mol}^{-1}$
Mass				
Electron	m _e	9.10938370	10 ⁻³¹	kg
Proton	$m_{\rm p}$	1.672 621 924	10 ⁻²⁷	kg
Neutron	m _n	1.674927498	10 ⁻²⁷	kg
Atomic mass constant	m_{μ}	1.660 539 067	10 ⁻²⁷	kg
Magnetic constant (vacuum permeability)	$\mu_{ m o}$	1.256637062	10 ⁻⁶	$Js^2C^{-2}m^{-1}$
Electric constant (vacuum permittivity)	$\varepsilon_0 = 1/\mu_0 c^2$	8.854187813	10-12	$J^{-1}C^2m^{-1}$
	$4\piarepsilon_{_0}$	1.112650056	10^{-10}	$J^{-1}C^2m^{-1}$
Bohr magneton	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.27401008	10 ⁻²⁴	J T-1
Nuclear magneton	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.05078375	10 ⁻²⁷	J T-1
Proton magnetic moment	μ_{p}	1.410606797	10 ⁻²⁶	J T-1
g-Value of electron	g_{e}	2.002319304		
Magnetogyric ratio	- 2			
Electron	$\gamma_{\rm e} = g_{\rm e} e/2m_{\rm e}$	1.760859630	1011	$T^{-1} s^{-1}$
Proton	$\gamma_{\rm p} = 2\mu_{\rm p}/\hbar$	2.675 221 674	108	$T^{-1} s^{-1}$
Bohr radius	$a_0 = 4\pi\varepsilon_0 \hbar^2/e^2 m_e$	5.291772109	10-11	m
Rydberg constant	$\tilde{R}_{\infty} = m_e e^4 / 8h^3 c \varepsilon_0^2$	1.097 373 157	105	cm^{-1}
-	$hc\tilde{R}_{x}/e$	13.60569312		eV
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 352 5693	10-3	
	α^{-1}	1.370 359 999 08	10 ²	
Stefan–Boltzmann constant	$\sigma = 2\pi^5 k^4 / 15 h^3 c^2$	5.670374	10 ⁻⁸	$W m^{-2} K^{-4}$
Standard acceleration of free fall	g	9.80665*		m s ⁻²
Gravitational constant	G	6.67430	10 ⁻¹¹	$N m^2 kg^{-2}$

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.

Atkins' PHYSICAL CHEMISTRY

Twelfth edition

Peter Atkins

Fellow of Lincoln College, University of Oxford, Oxford, UK

Julio de Paula

Professor of Chemistry, Lewis & Clark College, Portland, Oregon, USA

James Keeler

Associate Professor of Chemistry, University of Cambridge, and Walters Fellow in Chemistry at Selwyn College, Cambridge, UK

OXFORD UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Oxford University Press 2023

The moral rights of the author have been asserted

Eighth edition 2006 Ninth edition 2009 Tenth edition 2014 Eleventh edition 2018

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

> British Library Cataloguing in Publication Data Data available

Library of Congress Control Number: 2022935397

ISBN 978-0-19-884781-6

Printed in the UK by Bell & Bain Ltd., Glasgow

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

PREFACE

Our *Physical Chemistry* is continuously evolving in response to users' comments, our own imagination, and technical innovation. The text is mature, but it has been given a new vibrancy: it has become dynamic by the creation of an e-book version with the pedagogical features that you would expect. They include the ability to summon up living graphs, get mathematical assistance in an awkward derivation, find solutions to exercises, get feedback on a multiple-choice quiz, and have easy access to data and more detailed information about a variety of subjects. These innovations are not there simply because it is now possible to implement them: they are there to help students at every stage of their course.

The flexible, popular, and less daunting arrangement of the text into readily selectable and digestible Topics grouped together into conceptually related Focuses has been retained. There have been various modifications of emphasis to match the evolving subject and to clarify arguments either in the light of readers' comments or as a result of discussion among ourselves. We learn as we revise, and pass on that learning to our readers.

Our own teaching experience ceaselessly reminds us that mathematics is the most fearsome part of physical chemistry, and we likewise ceaselessly wrestle with finding ways to overcome that fear. First, there is encouragement to use mathematics, for it is the language of much of physical chemistry. The *How is that done?* sections are designed to show that if you want to make progress with a concept, typically making it precise and quantitative, then you have to deploy mathematics. Mathematics opens doors to progress. Then there is the fine-grained help with the manipulation of equations, with their detailed annotations to indicate the steps being taken. Behind all that are *The chemist's toolkits*, which provide brief reminders of the underlying mathematical techniques. There is more behind them, for the collections of Toolkits available via the e-book take their content further and provide illustrations of how the material is used.

The text covers a very wide area and we have sought to add another dimension: depth. Material that we judge too detailed for the text itself but which provides this depth of treatment, or simply adds material of interest springing form the introductory material in the text, can now be found in enhanced *A deeper look* sections available via the e-book. These sections are there for students and instructors who wish to extend their knowledge and see the details of more advanced calculations.

The main text retains *Examples* (where we guide the reader through the process of answering a question) and *Brief illustrations* (which simply indicate the result of using an equation, giving a sense of how it and its units are used). In this edition a few Exercises are provided at the end of each major section in a Topic along with, in the e-book, a selection of multiple-choice questions. These questions give the student the opportunity to check their understanding, and, in the case of the e-book, receive immediate feedback on their answers. Straightforward Exercises and more demanding Problems appear at the end of each Focus, as in previous editions.

The text is living and evolving. As such, it depends very much on input from users throughout the world. We welcome your advice and comments.

> PWA JdeP JK

USING THE BOOK

TO THE STUDENT

The twelfth edition of Atkins' Physical Chemistry has been developed in collaboration with current students of physical chemistry in order to meet your needs better than ever before. Our student reviewers have helped us to revise our writing style to retain clarity but match the way you read. We have also introduced a new opening section, Energy: A first look, which summarizes some key concepts that are used throughout the text and are best kept in mind right from the beginning. They are all revisited in greater detail later. The new edition also brings with it a hugely expanded range of digital resources, including living graphs, where you can explore the consequences of changing parameters, video interviews with practising scientists, video tutorials that help to bring key equations to life in each Focus, and a suite of self-check questions. These features are provided as part of an enhanced e-book, which is accessible by using the access code included in the book.

You will find that the e-book offers a rich, dynamic learning experience. The digital enhancements have been crafted to help your study and assess how well you have understood the material. For instance, it provides assessment materials that give you regular opportunities to test your understanding.

Innovative structure

Short, selectable Topics are grouped into overarching Focus sections. The former make the subject accessible; the latter provides its intellectual integrity. Each Topic opens with the questions that are commonly asked: why is this material important?, what should you look out for as a key idea?, and what do you need to know already?

Resource section

The *Resource section* at the end of the book includes a brief review of two mathematical tools that are used throughout the text: differentiation and integration, including a table of the integrals that are encountered in the text. There is a review of units, and how to use them, an extensive compilation of tables of physical and chemical data, and a set of character tables. Short extracts of most of these tables appear in the Topics themselves: they are there to give you an idea of the typical values of the physical quantities mentioned in the text.

FOCUS 5

SIMPLE MIXTURES

the Local & Carls Colours, Budgett Course, 1988

5A The thermodynamic description of mixtures

58 The properties of solutions

In His Topic, the concept of sherolosi presential is applied t

AVAILABLE IN THE E-BOOK

'Impact on...' sections

'Impact on' sections show how physical chemistry is applied in a variety of modern contexts. They showcase physical chemistry as an evolving subject. Go to this location in the accompanying e-book to view a

list of Impacts.

'A deeper look' sections

These sections take some of the material in the text further and are there if you want to extend your knowledge and see the details of some of the more advanced derivations Go to this location in the accompanying e-book to view a list of Deeper Looks.

Group theory tables

A link to comprehensive group theory tables can be found a the end of the accompanying e-book

The chemist's toolkits

The chemist's toolkits are reminders of the key mathematical physical, and chemical concepts that you need to understand in physica, and chemical concepts that you need to understand in order to follow the text. For a consolidated and enhanced collection of the toolkits found throughout the text, go to this location in the accompa-

nying e-book.

TOPIC 2A Internal energy

➤ Why do you need to know this material? The First Law of thermodynamics is the foundation of the discussion of the role of energy in chemistry. Wherever the generation or use of energy in physical transformations or chemical nextors is of interest, typing in the backgound are the concepts introduced by the First Law.

What is the key idea? The total energy of an isolated system is constant.

What do you need to know already

This Topic makes use of the discussion of the prope gases (Topic 1A), particularly the perfect gas law. It builds on the definition of work given in Energy: A first look. A closed system has a boundary through which matter cannot be transferred

Both open and closed systems can exchange energy with their surroundings.

An isolated system can exchange neither energy nor matter with its surroundings

2A.1 Work, heat, and energy

Although thermodynamics deals with the properties of bulk systems, it is enriched by understanding the molecular origins of these properties. What follows are descriptions of work, heat, and energy from both points of view.

Contents

PART	1 Mathematical resources	878
1.1	Integration	878
1.2	Differentiation	878
1.3	Series expansions	881

Checklist of concepts

A checklist of key concepts is provided at the end of each Topic, so that you can tick off the ones you have mastered.

Physical chemistry: people and perspectives

Leading figures in a varity of fields share their unique and varied experiences and careers, and talk about the challenges they faced and their achievements to give you a sense of where the study of physical chemistry can lead.

PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from reasonable assumptions and the details of the steps involved. This is one role for the *How is that done?* sections. Each one leads from an issue that arises in the text, develops the necessary equations, and arrives at a conclusion. These sections maintain the separation of the equation and its derivation so that you can find them easily for review, but at the same time emphasize that mathematics is an essential feature of physical chemistry.

The chemist's toolkits

The chemist's toolkits are reminders of the key mathematical, physical, and chemical concepts that you need to understand in order to follow the text. Many of these Toolkits are relevant to more than one Topic, and you can view a compilation of them, with enhancements in the form of more information and brief illustrations, in this section of the accompanying e-book.

Annotated equations and equation labels

We have annotated many equations to help you follow how they are developed. An annotation can help you travel across the equals sign: it is a reminder of the substitution used, an approximation made, the terms that have been assumed constant, an integral used, and so on. An annotation can also be a reminder of the significance of an individual term in an expression. We sometimes collect into a small box a collection of numbers or symbols to show how they carry from one line to the next. Many of the equations are labelled to highlight their significance.

Checklist of concepts

- □ 1. Work is the process of achieving motion against an opposing force.
- □ 2. Energy is the capacity to do work.
- □ 3. Heat is the process of transferring energy as a result of

Physical Chemistry: People and Perspectives

Interview with Sean M. Decatur President of Kenyon College

How is that done? 2B.1 Deriving the relation between enthalpy change and heat transfer at constant pressure

In a typical thermodynamic derivation, as here, a common way to proceed is to introduce successive definitions of the quantities of interest and then apply the appropriate constraints.

Step 1 Write an expression for H + dH in terms of the definition of H

For a general infinitesimal change in the state of the system, U changes to U + dU, p changes to p + dp, and V changes to

The chemist's toolkit 7B.1 Complex numbers

A complex number *z* has the form z = x + iy, where $i = \sqrt{-1}$. The complex conjugate of a complex number *z* is $z^* = x - iy$. Complex numbers combine together according to the following rules:

Addition and subtraction:

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

$$\ln \mathcal{W} = \ln \frac{N!}{N_0! N_1! N_2! \cdots} = \ln N! - \ln(N_0! N_1! N_2! \cdots)$$

$$= \ln N! - \ln N_0! - \ln N_1! - \ln N_2! - \cdots = \ln N! - \sum_i \ln N_i!$$

Checklists of equations

A handy checklist at the end of each topic summarizes the most important equations and the conditions under which they apply. Don't think, however, that you have to memorize every equation in these checklists: they are collected there for ready reference.

Video tutorials on key equations

Video tutorials to accompany each Focus dig deeper into some of the key equations used throughout that Focus, emphasizing the significance of an equation, and highlighting connections with material elsewhere in the book.

Living graphs

The educational value of many graphs can be heightened by seeing—in a very direct way—how relevant parameters, such as temperature or pressure, affect the plot. You can now interact with key graphs throughout the text in order to explore how they respond as the parameters are changed. These graphs are clearly flagged throughout the book, and you can find links to the dynamic versions in the corresponding location in the e-book.

SETTING UP AND SOLVING PROBLEMS

Brief illustrations

A *Brief illustration* shows you how to use an equation or concept that has just been introduced in the text. It shows you how to use data and manipulate units correctly. It also helps you to become familiar with the magnitudes of quantities.

Examples

Worked *Examples* are more detailed illustrations of the application of the material, and typically require you to assemble and deploy several relevant concepts and equations.

Everyone has a different way to approach solving a problem, and it changes with experience. To help in this process, we suggest how you should collect your thoughts and then proceed to a solution. All the worked *Examples* are accompanied by closely related self-tests to enable you to test your grasp of the material after working through our solution as set out in the *Example*.

Checklist of equations

Property	Equation
Enthalpy	H = U + pV
Heat transfer at constant pressure	$dH = dq_p, \Delta H = q_p$

Brief illustration 2B.2

In the reaction 3 $H_2(g) + N_2(g) \rightarrow 2 \text{ NH}_3(g)$, 4 mol of gasphase molecules is replaced by 2 mol of gas-phase molecules, so $\Delta n_g = -2 \text{ mol}$. Therefore, at 298 K, when $RT = 2.5 \text{ kJ mol}^{-1}$, the molar enthalpy and molar internal energy changes taking place in the system are related by

Example 2B.2 Evaluating an increase in enthalpy with temperature

What is the change in molar enthalpy of N_2 when it is heated from 25 °C to 100 °C? Use the heat capacity information in Table 2B.1.

Collect your thoughts The heat capacity of N_2 changes with temperature significantly in this range, so use eqn 2B.9.

The solution Using $a = 28.58 \text{ JK}^{-1} \text{ mol}^{-1}$, $b = 3.77 \times 10^{-3} \text{ JK}^{-2} \text{ mol}^{-1}$,

Self-check questions

This edition introduces self-check questions throughout the text, which can be found at the end of most sections in the e-book. They test your comprehension of the concepts discussed in each section, and provide instant feedback to help you monitor your progress and reinforce your learning. Some of the questions are multiple choice; for them the 'wrong' answers are not simply random numbers but the result of errors that, in our experience, students often make. The feedback from the multiple choice questions not only explains the correct method, but also points out the mistakes that led to the incorrect answer. By working through the multiple-choice questions you will be well prepared to tackle more challenging exercises and problems.

Discussion questions

Discussion questions appear at the end of each Focus, and are organized by Topic. They are designed to encourage you to reflect on the material you have just read, to review the key concepts, and sometimes to think about its implications and limitations.

Exercises and problems

Exercises are provided throughout the main text and, along with Problems, at the end of every Focus. They are all organised by Topic. Exercises are designed as relatively straightforward numerical tests; the Problems are more challenging and typically involve constructing a more detailed answer. For this new edition, detailed solutions are provided in the e-book in the same location as they appear in print.

For the Examples and Problems at the end of each Focus detailed solutions to the odd-numbered questions are provided in the e-book; solutions to the even-numbered questions are available only to lecturers.

FOCUS 1 The properties of gases

To test your understanding of this material, work through the Exercises, Additional exercises, Discussion questions, and Problems found throughout this Focus.

Selected solutions can be found at the end of this Focus in the e-book. Solutions to even-numbered questions are available online only to lecturers

TOPIC 1A The perfect gas

Discussion questions

D1A.1 Explain how the perfect gas equation of state arises by combination of Boyle's law, Charles's law, and Avogadro's principle.

Additional exercises

E1A.8 Express (i) 22.5 kPa in atmospheres and (ii) 770 Torr in pascals. 1A.9 Could 25 g of argon gas in a vessel of volume 1.5 dm² exert a pressure of 2.0 bar at 30 °C if it behaved as a perfect gas? If not, what pressure would

ElA10 A perfect gas undergoes isothermal expansion, which increases its volume by 2.20 dm². The final pressure and volume of the gas are 5.04 bar and 4.65 dm², respectively. Calculate the original pressure of the gas in (i) bar, (ii) atm.

EA.11 A perfect gas undergoes isothermal compression, which reduces it volume by 1.80 dm². The final pressure and volume of the gas are 1.97 bar and 2.14 dm², respectively. Calculate the original pressure of the gas in (i) bar, (ii) iora.

E1A12 A car tyre (an automobile tire) was inflated to a pressure of 24 lb in⁻² (1.00 atm = 14.7 lb in⁻³) on a winter's day when the temperature was -3^{+} C. What pressure will be found, assuming no leaks bave occurred and that the volume is constant, on a subsequent summer's day when the temperature 3 $^{+}$ CV What count in practice?

E1A.13 A sample of hydrogen gas was found to have a pressure of 125 kPa when the temperature was 23 $^\circ$ C. What can its pressure be expected to be when the temperature was 23 °C when the temperature is 11 °C?

E1A.14 A sample of 255 mg of neon occupies 3.00 dm³ at 122 K. Use the perfect gas law to calculate the pressure of the gas.

EVALUATE: It is a straight that the straight straight that the straight straight

 $\overleftarrow{}$ E1A.16 At 100 $^\circ C$ and 16.0 kPa, the mass density of phosphorus vapour 0.6388 kg m $^{-3}$. What is the molecular formula of phosphorus under the

E1A.17 Calculate the mass of water vapour present in a room of volume 400 m³ that contains air at 27 $^{\circ}$ C on a day when the relative humidity is

Problems

PIA.1 A manometer consists of a U-shaped tube containing a liquid. One side is connected to the apparatus and the other is open to the atmosphere. The pressure p inside the apparatus is given $p = p_{ee} + pgh$, where p_{ee} is the external

D1A.2 Explain the term 'partial pressure' and explain why Dalton's law is a limiting law.

60 per cent. *Hint:* Relative humidity is the prevailing partial pressure of water vapour expressed as a percentage of the vapour pressure of water vapour at the same temperature (in this case, 35.6 mbar).

E1A.18 Calculate the mass of water vapour present in a room of volume 250 m³ that contains air at 23 $^{\circ}$ C on a day when the relative humidity is 53 per cent (in this case, 28.1 mbar).

EIA19 Given that the mass density of air at 0.987 bar and 27 $^{\circ}$ C is 1.146 kg m⁻¹, calculate the mole fraction and partial pressure of nitrogen and oxygen assuming that (i) air consists only of these two gases, (ii) air also contains 1.0 mole per cent Ar.

EIA.20 A gas mixture consists of 320 mg of methane, 175 mg of argon. 225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPa. Cale (i) the volume and (ii) the total pressure of the mixture.

E1A.21 The mass density of a gaseous compound was found to be 1.23 kg m^ at 330 K and 20 kPa. What is the molar mass of the compound?

E1A.22 In an experiment to measure the molar mass of a gas, 250 cm³ of the gas was confined in a glass vessel. The pressure was 152 Torr at 298 K, and after correcting for buoyancy effects, the mass of the gas was 33.5 mg. What is the molar mass of the gas?

E1A.23 The densities of air at -85 °C, 0 °C, and 100 °C are 1.877 g dm⁻³, 1.294 g dm⁻¹, and 0.946 g dm⁻¹, respectively. From these data, and assu that air obeys Charles's law, determine a value for the absolute zero of temperature in degrees Celsius.

EA34 A certain sample of a gas has a volume of 20.00 dm² at 0 °C and 1.000 atm. A plot of the experimental data of its volume against the Celsius temperature, 0 at constant p, gives a straight line of shope 0.0741 dm² °C². From these data alone (without making use of the perfect gas law), determine the absolute zero of temperature in degrees Celsius.

E1A.25 A vessel of volume 22.4 dm3 contains 1.5 mol H3(g) and 2.5 mol N3(g) at 273.15 K. Calculate (i) the mole fractions of each comp partial pressures, and (iii) their total pressure.

pressure, ρ is the mass density of the liquid in the tube, g = 9.806 m s⁻² is the acceleration of free fall, and h is the difference in heights of the liquid in the two sides of the tube. (The quantity *pgh* is the *hydrostatic pressure* exerted by

Integrated activities

At the end of every Focus you will find questions that span several Topics. They are designed to help you use your knowledge creatively in a variety of ways.

FOCUS 4 Physical transformations of pure substances

Integrated activities

[4.1 Construct the phase diagram for benzene near its triple point at 36 Torr and 5.50 °C from the following data: $\Lambda_{\rm tot}H = 10.6$ kJ mol⁻¹, $\Delta_{\rm cop}H = 30.8$ kJ mol⁻¹, ρ (s) = 0.891 g cm⁻³, ρ (l) = 0.879 g cm⁻³. I4.2¹ In an investigation of thermophysical properties of methylbenzene R.D. Goodwin (*J. Phys. Chem. Ref. Data* 18, 1565 (1989)) presented expressions for two coexistence curves. The solid–liouid curve is given be apprendent of the solid–liouid curve is given be.

 $p/bar = p_s/bar + 1000(5.60 + 11.727x)x$

where $x = T/T_3 - 1$ and the triple point pressure and temperature are $p_1 = 0.4362 \mu bar$ and $T_3 = 178.15$ K. The liquid–vapour curve is given by

 $\ln(n/har) = -10.418/v + 21.157 - 15.996v + 14.015v^{2}$ $-5.0120 y^3 + 4.7334(1-y)^3$

(c) Plot $T_m/(\Delta_{to}H_m/\Delta_{to}S_m)$ for $5 \le N \le 20$. At what value of N does T_m change

14.4° A substance as well-known as methane still receives research att 14.4 A substance as weri-snown as merinane suit receives research autention because it is an important component of natural gas, a commonly used fossil fuel. Friend et al. have published a review of thermophysical properties of methane (D.G. Friend, J.E. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18, 533 (1989)), which included the following vapour pressure data describing th liquid-vapour coexistence curve

(a) Plot the liquid-vapour coexistence curve. (b) Estimate the standard boiling point of methane. (c) Compute the standard enthalpy of vaporiz of methane (at the standard boiling point), given that the molar volume

TAKING YOUR LEARNING FURTHER

'Impact' sections

'*Impact*' sections show you how physical chemistry is applied in a variety of modern contexts. They showcase physical chemistry as an evolving subject. These sections are listed at the beginning of the text, and are referred to at appropriate places elsewhere. You can find a compilation of '*Impact*' sections at the end of the e-book.

A deeper look

These sections take some of the material in the text further. Read them if you want to extend your knowledge and see the

TO THE INSTRUCTOR

We have designed the text to give you maximum flexibility in the selection and sequence of Topics, while the grouping of Topics into Focuses helps to maintain the unity of the subject. Additional resources are:

Figures and tables from the book

Lecturers can find the artwork and tables from the book in ready-to-download format. They may be used for lectures without charge (but not for commercial purposes without specific permission). details of some of the more advanced derivations. They are listed at the beginning of the text and are referred to where they are relevant. You can find a compilation of Deeper Looks at the end of the e-book.

Group theory tables

If you need character tables, you can find them at the end of the *Resource section*.

Key equations

Supplied in Word format so you can download and edit them.

Solutions to exercises, problems, and integrated activities

For the discussion questions, examples, problems, and integrated activities detailed solutions to the even-numbered questions are available to lecturers online, so they can be set as homework or used as discussion points in class.

Lecturer resources are available only to registered adopters of the textbook. To register, simply visit www.oup.com/he/ pchem12e and follow the appropriate links.

ABOUT THE AUTHORS

Photograph by Natasha Ellis-Knight.

visiting professorships in France, Israel, Japan, China, Russia, and New Zealand. He was the founding chairman of the Committee on Chemistry Education of the International Union of Pure and Applied Chemistry and was a member of IUPAC's Physical and Biophysical Chemistry Division.

Peter Atkins is a fellow of Lincoln College, Oxford, and emeritus professor of physical chemistry in the University of Oxford. He is the author of over seventy books for students and a general audience. His texts are market leaders around the globe. A frequent lecturer throughout the world, he has held

Julio de Paula is Professor of Chemistry at Lewis & Clark College. A native of Brazil, he received a B.A. degree in chemistry from Rutgers, The State University of New Jersey, and a Ph.D. in biophysical chemistry from Yale University. His research activities encompass the areas of molecular spectroscopy, photochemistry, and nanoscience. He has taught courses in general chemistry, physical chemistry, biochemistry, inorganic chemistry, instrumental analysis, environmental chemistry, and writing. Among his professional honours are a Christian and Mary Lindback Award for Distinguished Teaching, a Henry Dreyfus Teacher-Scholar Award, and a STAR Award from the Research Corporation for Science Advancement.

Photograph by Nathan Pitt, © University of Cambridge.

James Keeler is Associate Professor of Chemistry, University of Cambridge, and Walters Fellow in Chemistry at Selwyn College. He received his first degree and doctorate from the University of Oxford, specializing in nuclear magnetic resonance spectroscopy. He is presently Head of Department, and before that was Director of Teaching in the department and also Senior Tutor at Selwyn College.

ACKNOWLEDGEMENTS

A book as extensive as this could not have been written without significant input from many individuals. We would like to thank the hundreds of instructors and students who contributed to this and the previous eleven editions:

Scott Anderson, University of Utah Milan Antonijevic, University of Greenwich Elena Besley, University of Greenwich Merete Bilde, Aarhus University Matthew Blunt, University College London Simon Bott, Swansea University Klaus Braagaard Møller, Technical University of Denmark Wesley Browne, University of Groningen Sean Decatur, Kenyon College Anthony Harriman, Newcastle University Rigoberto Hernandez, Johns Hopkins University J. Grant Hill, University of Sheffield Kayla Keller, Kentucky Wesleyan College Kathleen Knierim, University of Louisiana Lafayette Tim Kowalczyk, Western Washington University Kristin Dawn Krantzman, College of Charleston Hai Lin, University of Colorado Denver Mikko Linnolahti, University of Eastern Finland Mike Lyons, Trinity College Dublin Jason McAfee, University of North Texas Joseph McDouall, University of Manchester Hugo Meekes, Radboud University Gareth Morris, University of Manchester David Rowley, University College London Nessima Salhi, Uppsala University Andy S. Sardjan, University of Groningen Trevor Sears, Stony Brook University Gemma Shearman, Kingston University John Slattery, University of York Catherine Southern, DePaul University Michael Staniforth, University of Warwick Stefan Stoll, University of Washington Mahamud Subir, Ball State University Enrico Tapavicza, CSU Long Beach Jeroen van Duifneveldt, University of Bristol Darren Walsh, University of Nottingham Graeme Watson, Trinity College Dublin Darren L. Williams, Sam Houston State University Elisabeth R. Young, Lehigh University

Our special thanks also go to the many student reviewers who helped to shape this twelfth edition:

Katherine Ailles, *University of York* Mohammad Usman Ali, *University of Manchester* Rosalind Baverstock, Durham University Grace Butler, Trinity College Dublin Kaylyn Cater, Cardiff University Ruth Comerford, University College Dublin Orlagh Fraser, University of Aberdeen Dexin Gao, University College London Suruthi Gnanenthiran, University of Bath Milena Gonakova, University of the West of England Bristol Joseph Ingle, University of Lincoln Jeremy Lee, University of Durham Luize Luse, Heriot-Watt University Zoe Macpherson, University of Strathclyde Sukhbir Mann, University College London Declan Meehan, Trinity College Dublin Eva Pogacar, Heriot-Watt University Pawel Pokorski, Heriot-Watt University Fintan Reid, University of Strathclyde Gabrielle Rennie, University of Strathclyde Annabel Savage, Manchester Metropolitan University Sophie Shearlaw, University of Strathclyde Yutong Shen, University College London Saleh Soomro, University College London Matthew Tully, Bangor University Richard Vesely, University of Cambridge Phoebe Williams, Nottingham Trent University

We would also like to thank Michael Clugston for proofreading the entire book, and Peter Bolgar, Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, and Stephanie Smith who all worked alongside James Keeler in the writing of the solutions to the exercises and problems. The multiple-choice questions were developed in large part by Dr Stephanie Smith (Yusuf Hamied Department of Chemistry and Pembroke College, University of Cambridge). These questions and further exercises were integrated into the text by Chloe Balhatchet (Yusuf Hamied Department of Chemistry and Selwyn College, University of Cambridge), who also worked on the living graphs. The solutions to the exercises and problems are taken from the solutions manual for the eleventh edition prepared by Peter Bolgar, Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie Smith, and James Keeler, with additional contributions from Chloe Balhatchet.

Last, but by no means least, we acknowledge our two commissioning editors, Jonathan Crowe of Oxford University Press and Jason Noe of OUP USA, and their teams for their assistance, advice, encouragement, and patience. We owe special thanks to Katy Underhill, Maria Bajo Gutiérrez, and Keith Faivre from OUP, who skillfully shepherded this complex project to completion.

BRIEF CONTENTS

ENERGY A First Look			FC
FOCUS 1	The properties of gases	3	FC
FOCUS 2	The First Law	33	FC
FOCUS 3	The Second and Third Laws	75	FC
FOCUS 4	Physical transformations of pure substances	119	F(
FOCUS 5	Simple mixtures	141	FC
FOCUS 6	Chemical equilibrium	205	FC
FOCUS 7	Quantum theory	237	FC
FOCUS 8	Atomic structure and spectra	305	Re
FOCUS 9	Molecular structure	343	
FOCUS 10	Molecular symmetry	397	In
FOCUS 11	Molecular spectroscopy	427	

FOCUS 12	2 Magnetic resonance	499
FOCUS 13	Statistical thermodynamics	543
FOCUS 14	Molecular interactions	597
FOCUS 15	Solids	655
FOCUS 16	Molecules in motion	707
FOCUS 17	Chemical kinetics	737
FOCUS 18	3 Reaction dynamics	793
FOCUS 19	Processes at solid surfaces	835
Resource	section	
		878
2 Q	uantities and units	882
3 D	ata	884
4 C	haracter tables	910
Index		915
	FOCUS 14 FOCUS 14 FOCUS 15 FOCUS 16 FOCUS 16	 FOCUS 14 Molecular interactions FOCUS 15 Solids FOCUS 15 Molecules in motion FOCUS 16 Molecules in motion FOCUS 17 Chemical kinetics FOCUS 18 Reaction dynamics FOCUS 19 Processes at solid surfaces Resource section Mathematical resources Quantities and units Data Character tables

FULL CONTENTS

Conventions	xxvii
Physical chemistry: people and perspectives	xxvii
List of tables	xxviii
List of The chemist's toolkits	xxx
List of material provided as A deeper look	xxxi
List of Impacts	xxxii
	~~~
ENERGY A First Look	xxxiii
FOCUS 1 The properties of gases	3
TOPIC 1A The perfect gas	4
1A.1 Variables of state	4
(a) Pressure and volume	4
(b) Temperature	5
(c) Amount	5
(d) Intensive and extensive properties	5
1A.2 Equations of state	6
(a) The empirical basis of the perfect gas law	6
(b) The value of the gas constant	8
(c) Mixtures of gases	9
Checklist of concepts	10
Checklist of equations	10
TOPIC 1B The kinetic model	11
1B.1 The model	11
(a) Pressure and molecular speeds	11
(b) The Maxwell–Boltzmann distribution of speeds	12
(c) Mean values	14
1B.2 Collisions	16
(a) The collision frequency	16
(b) The mean free path	16
Checklist of concepts	17
Checklist of equations	17
TOPIC 1C Real gases	18
1C.1 Deviations from perfect behaviour	18
(a) The compression factor	19
(b) Virial coefficients	20
(c) Critical constants	21
1C.2 The van der Waals equation	22
(a) Formulation of the equation	22
(b) The features of the equation	23
(c) The principle of corresponding states	24
Checklist of concepts	26
Checklist of equations	26

FOCUS 2 The First Law	33
TOPIC 2A Internal energy	34
2A.1 Work, heat, and energy	34
(a) Definitions	34
(b) The molecular interpretation of heat and work	35
2A.2 The definition of internal energy	36
(a) Molecular interpretation of internal energy	36
(b) The formulation of the First Law	37
2A.3 Expansion work	37
(a) The general expression for work	37
(b) Expansion against constant pressure	38
(c) Reversible expansion	39
<ul> <li>(d) Isothermal reversible expansion of a perfect gas</li> <li>2A.4 Heat transactions</li> </ul>	39
(a) Calorimetry	40 40
(b) Heat capacity	4
Checklist of concepts	43
Checklist of equations	44
TOPIC 2B Enthalpy	45
2B.1 The definition of enthalpy	45
(a) Enthalpy change and heat transfer	45
(b) Calorimetry	46
2B.2 The variation of enthalpy with temperature	47
(a) Heat capacity at constant pressure	47
(b) The relation between heat capacities	49 49
Checklist of concepts Checklist of equations	49
checkist of equations	
TOPIC 2C Thermochemistry	50
2C.1 Standard enthalpy changes	50
(a) Enthalpies of physical change	50
(b) Enthalpies of chemical change	51
(c) Hess's law	52
2C.2 Standard enthalpies of formation	53
2C.3 The temperature dependence of reaction enthalpies	54
2C.4 Experimental techniques	55
<ul><li>(a) Differential scanning calorimetry</li><li>(b) Isothermal titration calorimetry</li></ul>	55 56
Checklist of concepts	56
Checklist of equations	57
<b>TOPIC 2D</b> State functions and exact differentials	58
2D.1 Exact and inexact differentials	58
2D.2 Changes in internal energy	59
(a) General considerations	59
(b) Changes in internal energy at constant pressure	60

2D.3 Changes in enthalpy	62
2D.4 The Joule–Thomson effect	63
Checklist of concepts	64
Checklist of equations	65
TOPIC 25. Additional and a second	
TOPIC 2E Adiabatic changes	66
2E.1 The change in temperature	66
2E.2 The change in pressure	67
Checklist of concepts	68
Checklist of equations	68
FOCUS 3 The Second and Third Laws	75
TOPIC 3A Entropy	76
3A.1 The Second Law	76
3A.2 The definition of entropy	78
(a) The thermodynamic definition of entropy	78
(b) The statistical definition of entropy	79
3A.3 The entropy as a state function	80
(a) The Carnot cycle	81
(b) The thermodynamic temperature	83
(c) The Clausius inequality	84
Checklist of concepts	85
Checklist of equations	85
TODIC 2D. Entropy changes accompany in a	
<b>TOPIC 3B</b> Entropy changes accompanying	06
specific processes	86
3B.1 Expansion	86
3B.2 Phase transitions	87
3B.3 Heating	88
3B.4 Composite processes	89
Checklist of concepts	90
Checklist of equations	90
<b>TOPIC 3C</b> The measurement of entropy	91
3C.1 The calorimetric measurement of entropy	91
3C.2 The Third Law	92
(a) The Nernst heat theorem	92
(b) Third-Law entropies	93
(c) The temperature dependence of reaction entropy	94
Checklist of concepts	95
Checklist of equations	95
TOPIC 3D Concentrating on the system	96
3D.1 The Helmholtz and Gibbs energies	96
(a) Criteria of spontaneity	96
(b) Some remarks on the Helmholtz energy	97
(c) Maximum work	97
(d) Some remarks on the Gibbs energy	99
(e) Maximum non-expansion work	99
3D.2 Standard molar Gibbs energies	100
(a) Gibbs energies of formation	100
(b) The Born equation	101
Checklist of concepts	102
Checklist of equations	103

<b>TOPIC 3E</b> Combining the First and Second Laws	104
3E.1 Properties of the internal energy	104
(a) The Maxwell relations	105
(b) The variation of internal energy with volume	106
3E.2 Properties of the Gibbs energy	107
(a) General considerations	107
(b) The variation of the Gibbs energy with temperature	108
(c) The variation of the Gibbs energy of condensed phases	109
with pressure (d) The variation of the Gibbs energy of gases with pressure	109
Checklist of concepts	110
Checklist of equations	111
checkist of equations	
FOCUS 4 Physical transformations	
of pure substances	119
<b>TOPIC 4A</b> Phase diagrams of pure substances	120
4A.1 The stabilities of phases	120
(a) The number of phases	120
(b) Phase transitions	121
(c) Thermodynamic criteria of phase stability	121
4A.2 Coexistence curves	122
(a) Characteristic properties related to phase transitions	122
(b) The phase rule	123
4A.3 Three representative phase diagrams	125
(a) Carbon dioxide	125
(b) Water	125
(c) Helium	126
Checklist of concepts	127
Checklist of equations	127
<b>TOPIC 4B</b> Thermodynamic aspects of phase	
transitions	128
4B.1 The dependence of stability on the conditions	128
(a) The temperature dependence of phase stability	128
(b) The response of melting to applied pressure	129
(c) The vapour pressure of a liquid subjected to pressure	130
4B.2 The location of coexistence curves	131
(a) The slopes of the coexistence curves	131
(b) The solid-liquid coexistence curve	132
(c) The liquid-vapour coexistence curve	132
(d) The solid–vapour coexistence curve	134
Checklist of concepts	134
Checklist of equations	135
FOCUS 5 Simple mixtures	141
<b>TOPIC 5A</b> The thermodynamic description	
of mixtures	143
5A.1 Partial molar quantities	143
(a) Partial molar volume	143
(b) Partial molar Gibbs energies	145
(c) The Gibbs–Duhem equation	146
5A.2 The thermodynamics of mixing	147
(a) The Gibbs energy of mixing of perfect gases	148
(b) Other thermodynamic mixing functions	149

5A.3 The chemical potentials of liquids	150
(a) Ideal solutions	150
(b) Ideal-dilute solutions	151
Checklist of concepts	153
Checklist of equations	154
<b>TOPIC 5B</b> The properties of solutions	155
5B.1 Liquid mixtures	155
(a) Ideal solutions	155
(b) Excess functions and regular solutions	156
5B.2 Colligative properties	158
(a) The common features of colligative properties	158
(b) The elevation of boiling point	159
(c) The depression of freezing point	161
(d) Solubility	161
(e) Osmosis	162
Checklist of concepts	165
Checklist of equations	165
<b>TOPIC 5C</b> Phase diagrams of binary	
systems: liquids	166
5C.1 Vapour pressure diagrams	166
5C.2 Temperature-composition diagrams	168
(a) The construction of the diagrams	168
(b) The interpretation of the diagrams	169
5C.3 Distillation	170
(a) Fractional distillation	170
(b) Azeotropes	170
(c) Immiscible liquids	172
5C.4 Liquid–liquid phase diagrams	172
(a) Phase separation	173
(b) Critical solution temperatures	174
(c) The distillation of partially miscible liquids	175
Checklist of concepts	177
Checklist of equations	177
<b>TOPIC 5D</b> Phase diagrams of binary	470
systems: solids	178
5D.1 Eutectics	178
5D.2 Reacting systems	180
5D.3 Incongruent melting	180
Checklist of concepts	181
<b>TOPIC 5E</b> Phase diagrams of ternary systems	182
5E.1 Triangular phase diagrams	182
5E.2 Ternary systems	183
(a) Partially miscible liquids	183 184
(b) Ternary solids	
Checklist of concepts	185
TOPIC 5F Activities	186
5F.1 The solvent activity	186
5F.2 The solute activity	187
(a) Ideal-dilute solutions	187
(b) Real solutes	187

(c) Activities in terms of molalities	188
5F.3 The activities of regular solutions	189
5F.4 The activities of ions	190
(a) Mean activity coefficients	190
(b) The Debye–Hückel limiting law	191
(c) Extensions of the limiting law	192
Checklist of concepts	193
Checklist of equations	193

FOCUS 6	Chemical equilibrium	205
---------	----------------------	-----

-

<b>TOPIC 6A</b> The equilibrium constant	206
6A.1 The Gibbs energy minimum	206
(a) The reaction Gibbs energy	206
(b) Exergonic and endergonic reactions	207
6A.2 The description of equilibrium	207
(a) Perfect gas equilibria	208
(b) The general case of a reaction	209
(c) The relation between equilibrium constants	211
(d) Molecular interpretation of the equilibrium constant	212
Checklist of concepts	213
Checklist of equations	213

TOPIC 6B The response of equilibria to	
the conditions	214
6B.1 The response to pressure	214
6B.2 The response to temperature	216
(a) The van 't Hoff equation	216
(b) The value of K at different temperatures	217
Checklist of concepts	218
Checklist of equations	218
TOPIC 6C Electrochemical cells	219
6C.1 Half-reactions and electrodes	219
6C.2 Varieties of cell	220
(a) Liquid junction potentials	220
(b) Notation	221
6C.3 The cell potential	221
(a) The Nernst equation	222
(b) Cells at equilibrium	223
6C.4 The determination of thermodynamic functions	224
Checklist of concepts	225
Checklist of equations	225
TOPIC 6D Electrode potentials	226
6D.1 Standard potentials	226
(a) The measurement procedure	227
(b) Combining measured values	228
6D.2 Applications of standard electrode potentials	228
(a) The electrochemical series	228

(b) The determination of activity coefficients

**Checklist of concepts** 

**Checklist of equations** 

(c) The determination of equilibrium constants

FOCUS 7 Quantum theory	237
<b>TOPIC 7A</b> The origins of quantum mechanics	239
7A.1 Energy quantization	239
(a) Black-body radiation	239
(b) Heat capacity	242
(c) Atomic and molecular spectra	243
7A.2 Wave-particle duality	244
(a) The particle character of electromagnetic radiation	244
(b) The wave character of particles	246
Checklist of concepts	247
Checklist of equations	247
TOPIC 7B Wavefunctions	248
7B.1 The Schrödinger equation	248
7B.2 The Born interpretation	248
(a) Normalization	250
(b) Constraints on the wavefunction	251
(c) Quantization	251
Checklist of concepts	252
Checklist of equations	252
<b>TOPIC 7C</b> Operators and observables	253
7C.1 Operators	253
(a) Eigenvalue equations	253
(b) The construction of operators	254
(c) Hermitian operators	255 256
(d) Orthogonality	250
7C.2 Superpositions and expectation values	257
7C.3 The uncertainty principle	259
7C.4 The postulates of quantum mechanics	201 261
Checklist of concepts	
Checklist of equations	262
<b>TOPIC 7D</b> Translational motion	263
7D.1 Free motion in one dimension	263
7D.2 Confined motion in one dimension	264
(a) The acceptable solutions	264
(b) The properties of the wavefunctions	265
(c) The properties of the energy	266
7D.3 Confined motion in two and more dimensions	268 268
<ul><li>(a) Energy levels and wavefunctions</li><li>(b) Degeneracy</li></ul>	208
7D.4 Tunnelling	271
Checklist of concepts	273
Checklist of equations	273
<b>TOPIC 7E</b> Vibrational motion	275
7E.1 The harmonic oscillator	273 275
(a) The energy levels	275
(a) The energy levels (b) The wavefunctions	276
7E.2 Properties of the harmonic oscillator	279
(a) Mean values	279
(b) Tunnelling	280

Checklist of concepts	282
Checklist of equations	282
·	
TOPIC 7F Rotational motion	283
7F.1 Rotation in two dimensions	283
(a) The solutions of the Schrödinger equation	284
(b) Quantization of angular momentum	285
7F.2 Rotation in three dimensions	286
(a) The wavefunctions and energy levels	286
(b) Angular momentum	289
(c) The vector model	290
Checklist of concepts	291
Checklist of equations	292
FOCUS 8 Atomic structure and spectra	305
TOPIC 8A Hydrogenic atoms	306
8A.1 The structure of hydrogenic atoms	306
(a) The separation of variables	306
(b) The radial solutions	307
8A.2 Atomic orbitals and their energies	309
(a) The specification of orbitals	310
(b) The energy levels	310
(c) Ionization energies	311
(d) Shells and subshells	311
(e) s Orbitals	312
(f) Radial distribution functions	313
(g) p Orbitals	315
(h) d Orbitals	316
Checklist of concepts	316
Checklist of equations	317
TOPIC 8B Many-electron atoms	318
8B.1 The orbital approximation	318
8B.2 The Pauli exclusion principle	319
(a) Spin	319
(b) The Pauli principle	320
8B.3 The building-up principle	322
(a) Penetration and shielding	322
(b) Hund's rules	323
(c) Atomic and ionic radii	325
(d) Ionization energies and electron affinities	326
8B.4 Self-consistent field orbitals	327
Checklist of concepts	328
Checklist of equations	328
TOPIC 8C Atomic spectra	329
8C.1 The spectra of hydrogenic atoms	329
8C.2 The spectra of many-electron atoms	330
(a) Singlet and triplet terms	330
(b) Spin–orbit coupling	331
(c) Term symbols	334
(d) Hund's rules and term symbols (a) Selection rules	337
(e) Selection rules	337

Checklist of concepts Checklist of equations	338 338
FOCUS 9 Molecular structure	343
PROLOGUE The Born–Oppenheimer approximation	345
<b>TOPIC 9A</b> Valence-bond theory 9A.1 Diatomic molecules	346
9A.1 Diatomic molecules 9A.2 Resonance	346 348
9A.3 Polyatomic molecules	348
(a) Promotion	349
(b) Hybridization	350
Checklist of concepts	352
Checklist of equations	352
<b>TOPIC 9B</b> Molecular orbital theory: the hydrogen	252
molecule-ion	353
9B.1 Linear combinations of atomic orbitals (a) The construction of linear combinations	353 353
(b) Bonding orbitals	354
(c) Antibonding orbitals	356
9B.2 Orbital notation	358
Checklist of concepts	358
Checklist of equations	358
<b>TOPIC 9C</b> Molecular orbital theory: homonuclear	
diatomic molecules	359
9C.1 Electron configurations (a) MO energy level diagrams	359 359
(b) $\sigma$ Orbitals and $\pi$ orbitals	360
(c) The overlap integral	361
(d) Period 2 diatomic molecules	362
9C.2 Photoelectron spectroscopy	364
Checklist of concepts Checklist of equations	365 365
	202
<b>TOPIC 9D</b> Molecular orbital theory: heteronuclear diatomic molecules	366
9D.1 Polar bonds and electronegativity	366
9D.2 The variation principle	367
(a) The procedure	368
(b) The features of the solutions	370
Checklist of concepts	372
Checklist of equations	372
<b>TOPIC 9E</b> Molecular orbital theory: polyatomic molecules	272
9E.1 The Hückel approximation	373 373
(a) An introduction to the method	373
(b) The matrix formulation of the method	374
9E.2 Applications	376
(a) $\pi$ -Electron binding energy	376
(b) Aromatic stability 9E.3 Computational chemistry	378 379
(a) Basis functions and basis sets	379
(b) Electron correlation	380

(c) Density functional theory	381
(d) Practical calculations	381
(e) Graphical representations	381
Checklist of concepts	382
Checklist of equations	382
<b>TOPIC 9F</b> Computational chemistry	383
9F.1 The central challenge	383
9F.2 The Hartree–Fock formalism	384
9F.3 The Roothaan equations	385
9F.4 Evaluation and approximation of the integrals	386
9F.5 Density functional theory	388
Checklist of concepts	389
Checklist of equations	390
FOCUS 10 Molecular symmetry	397
<b>TOPIC 10A</b> Shape and symmetry	398
10A.1 Symmetry operations and symmetry elements	398
<b>10A.2</b> The symmetry classification of molecules (a) The groups C ₁ , C ₂ and C ₂	400 402
(a) The groups $C_n$ , $C_{n'}$ and $C_{nh}$	402
(c) The groups $D_{n'} D_{nb'}$ and $D_{nd}$	403
(d) The groups S _n	403
(e) The cubic groups	403
(f) The full rotation group	404
10A.3 Some immediate consequences of symmetry	404
(a) Polarity	404
(b) Chirality	405
Checklist of concepts	406
Checklist of symmetry operations and elements	406
TOPIC 10B Group theory	407
10B.1 The elements of group theory	407
10B.2 Matrix representations	409
(a) Representatives of operations	409
(b) The representation of a group	409
(c) Irreducible representations	410
(d) Characters	411
<b>10B.3 Character tables</b> (a) The symmetry species of atomic orbitals	412 413
(b) The symmetry species of linear combinations of orbitals	413
(c) Character tables and degeneracy	414
Checklist of concepts	415
Checklist of equations	416
<b>TOPIC 10C</b> Applications of symmetry	417
10C.1 Vanishing integrals	417
(a) Integrals of the product of functions	418
(b) Decomposition of a representation	419
10C.2 Applications to molecular orbital theory	420
(a) Orbital overlap	420
(b) Symmetry-adapted linear combinations	421
10C.3 Selection rules	422
Checklist of concepts	423
Checklist of equations	423

FOCUS 11 Molecular spectroscopy	427
<b>TOPIC 11A</b> General features of molecular spectroscopy	429
11A.1 The absorption and emission of radiation	430
(a) Stimulated and spontaneous radiative processes	430
(b) Selection rules and transition moments	430
(c) The Beer–Lambert law	431
11A.2 Spectral linewidths	433
(a) Doppler broadening	433
(b) Lifetime broadening	435
11A.3 Experimental techniques	435
(a) Sources of radiation	436
(b) Spectral analysis	436
(c) Detectors	438
(d) Examples of spectrometers	438
Checklist of concepts	439
Checklist of equations	439
TOPIC 11B Rotational spectroscopy	440
11B.1 Rotational energy levels	440
(a) Spherical rotors	441
(b) Symmetric rotors	442
(c) Linear rotors	444 444
(d) Centrifugal distortion	444
11B.2 Microwave spectroscopy (a) Selection rules	444
(b) The appearance of microwave spectra	446
11B.3 Rotational Raman spectroscopy	447
11B.4 Nuclear statistics and rotational states	449
Checklist of concepts	451
Checklist of equations	451
·	101
<b>TOPIC 11C</b> Vibrational spectroscopy of	150
diatomic molecules	452
11C.1 Vibrational motion	452
11C.2 Infrared spectroscopy	453
11C.3 Anharmonicity	454
(a) The convergence of energy levels	454
(b) The Birge–Sponer plot	455
11C.4 Vibration-rotation spectra	456 <b>457</b>
<ul><li>(a) Spectral branches</li><li>(b) Combination differences</li></ul>	457
11C.5 Vibrational Raman spectra	458
Checklist of concepts	460
Checklist of equations	400
	400
<b>TOPIC 11D</b> Vibrational spectroscopy of	1 ~ 1
polyatomic molecules	461
11D.1 Normal modes	461
11D.2 Infrared absorption spectra	462
11D.3 Vibrational Raman spectra	464
Checklist of concepts	464
Checklist of equations	465

<b>TOPIC 11E</b> Symmetry analysis of vibrational spectra	466
11E.1 Classification of normal modes according to symmetry	466
11E.2 Symmetry of vibrational wavefunctions	468
(a) Infrared activity of normal modes	468
(b) Raman activity of normal modes	469
(c) The symmetry basis of the exclusion rule	469
Checklist of concepts	469
TOPIC 11F Electronic spectra	470
11F.1 Diatomic molecules	470
(a) Term symbols	470
(b) Selection rules	473
(c) Vibrational fine structure	473
(d) Rotational fine structure	476
11F.2 Polyatomic molecules	477
(a) d-Metal complexes	478
(b) $\pi^* \leftarrow \pi$ and $\pi^* \leftarrow$ n transitions	479
Checklist of concepts	480
Checklist of equations	480
TOPIC 11G Decay of excited states	481
11G.1 Fluorescence and phosphorescence	481
11G.2 Dissociation and predissociation	483
11G.3 Lasers	484
Checklist of concepts	485
FOCUS 12 Magnetic resonance	499
TOPIC 12A General principles	500
12A.1 Nuclear magnetic resonance	500
(a) The energies of nuclei in magnetic fields	500
(b) The NMR spectrometer	502
12A.2 Electron paramagnetic resonance	503
(a) The energies of electrons in magnetic fields	503
(b) The EPR spectrometer	504
Checklist of concepts	505
Checklist of equations	505
TOPIC 12B Features of NMR spectra	506
12B.1 The chemical shift	506
12B.2 The origin of shielding constants	508
(a) The local contribution	508
(b) Neighbouring group contributions	509
(c) The solvent contribution	510
12B.3 The fine structure	511
(a) The appearance of the spectrum	511
(b) The magnitudes of coupling constants	513
12B.4 The origin of spin-spin coupling	514
(a) Equivalent nuclei	516
(b) Strongly coupled nuclei	517
12B.5 Exchange processes	517
12B.6 Solid-state NMR	518
Checklist of concepts	519
Checklist of equations	520

TOPIC 12C Pulse techniques in NMR	521
12C.1 The magnetization vector	521
(a) The effect of the radiofrequency field	522
(b) Time- and frequency-domain signals	523
12C.2 Spin relaxation	525
(a) The mechanism of relaxation	525
(b) The measurement of $T_1$ and $T_2$	526
12C.3 Spin decoupling	527
12C.4 The nuclear Overhauser effect	528
Checklist of concepts	530
Checklist of equations	530
TOPIC 12D Electron paramagnetic resonance	531
12D.1 The g-value	531
12D.2 Hyperfine structure	532
(a) The effects of nuclear spin	532
12D.3 The McConnell equation	533
(a) The origin of the hyperfine interaction	534
Checklist of concepts	535
Checklist of equations	535
FOCUS 13 Statistical thermodynamics	543

TOPIC 13A The Boltzmann distribution	544
13A.1 Configurations and weights	544
(a) Instantaneous configurations	544
(b) The most probable distribution	545
13A.2 The relative populations of states	548
Checklist of concepts	549
Checklist of equations	549
TOPIC 13B Molecular partition functions	550
13B.1 The significance of the partition function	550
13B.2 Contributions to the partition function	552
(a) The translational contribution	552
(b) The rotational contribution	554
(c) The vibrational contribution	558
(d) The electronic contribution	559
Checklist of concepts	560
Checklist of equations	560
TOPIC 13C Molecular energies	561
13C.1 The basic equations	561
13C.2 Contributions of the fundamental modes	
of motion	562
(a) The translational contribution	562
(b) The rotational contribution	562
(c) The vibrational contribution	563
(d) The electronic contribution	564
(e) The spin contribution	565
Checklist of concepts	565

Checklist of equations		

TOPIC 13D The canonical ensemble	567
13D.1 The concept of ensemble	567
(a) Dominating configurations	568
(b) Fluctuations from the most probable distribution	568
13D.2 The mean energy of a system	569
13D.3 Independent molecules revisited	569
13D.4 The variation of the energy with volume	570
Checklist of concepts	572
Checklist of equations	572
TOPIC 13E The internal energy and the entropy	573
13E.1 The internal energy	573
(a) The calculation of internal energy	573
(b) Heat capacity	574
13E.2 The entropy	575
(a) Entropy and the partition function	576
(b) The translational contribution	577
(c) The rotational contribution	578
(d) The vibrational contribution	579 579
(e) Residual entropies	
Checklist of concepts	581
Checklist of equations	581
<b>TOPIC 13F</b> Derived functions	582
13F.1 The derivations	582
13F.2 Equilibrium constants	585
(a) The relation between K and the partition function	585
(b) A dissociation equilibrium	586
(c) Contributions to the equilibrium constant	586
Checklist of concepts	588
Checklist of equations	588
FOCUS 14 Molecular interactions	597
TOPIC 14A The electric properties of molecules	599
14A.1 Electric dipole moments	599
14A.2 Polarizabilities	601
14A.3 Polarization	603
(a) The mean dipole moment	603
(b) The frequency dependence of the polarization	604
(c) Molar polarization	604
Checklist of concepts	606
Checklist of equations	607
TOPIC 14B Interactions between molecules	608
14B.1 The interactions of dipoles	000
14b.1 The interactions of dipoles	608
(a) Charge-dipole interactions	608 608
<ul> <li>(a) Charge–dipole interactions</li> <li>(b) Dipole–dipole interactions</li> </ul>	608 608 609
(b) Dipole-dipole interactions	608
	608 609
<ul><li>(b) Dipole-dipole interactions</li><li>(c) Dipole-induced dipole interactions</li></ul>	608 609 612
<ul><li>(b) Dipole–dipole interactions</li><li>(c) Dipole–induced dipole interactions</li><li>(d) Induced dipole–induced dipole interactions</li></ul>	608 609 612 612
<ul> <li>(b) Dipole-dipole interactions</li> <li>(c) Dipole-induced dipole interactions</li> <li>(d) Induced dipole-induced dipole interactions</li> <li>14B.2 Hydrogen bonding</li> </ul>	608 609 612 612 613

TOPIC 14C Liquids	618
14C.1 Molecular interactions in liquids	618
(a) The radial distribution function	618
(b) The calculation of $g(r)$	619
(c) The thermodynamic properties of liquids	620
14C.2 The liquid-vapour interface	621
(a) Surface tension	621
(b) Curved surfaces	622
(c) Capillary action	623
14C.3 Surface films	624
(a) Surface pressure	624
(b) The thermodynamics of surface layers	626
14C.4 Condensation	627
Checklist of concepts	628
Checklist of equations	628
TOPIC 14D Macromolecules	629
14D.1 Average molar masses	629
14D.2 The different levels of structure	630
14D.3 Random coils	631
(a) Measures of size	631
(b) Constrained chains	634
(c) Partly rigid coils	634
14D.4 Mechanical properties	635
(a) Conformational entropy	635
(b) Elastomers	636
14D.5 Thermal properties	637
Checklist of concepts	638
Checklist of equations	639
TOPIC 14E Self-assembly	640
14E.1 Colloids	640
(a) Classification and preparation	640
(b) Structure and stability	641
(c) The electrical double layer	641
14E.2 Micelles and biological membranes	643
(a) The hydrophobic interaction	643
(b) Micelle formation	644
(c) Bilayers, vesicles, and membranes	646
Checklist of concepts	647
Checklist of equations	647
FOCUS 15 Solids	655
TOPIC 15A Crystal structure	657
15A.1 Periodic crystal lattices	657
15A.2 The identification of lattice planes	659
(a) The Miller indices	659
(b) The separation of neighbouring planes	660
Checklist of concepts	661
Checklist of equations	662
TOPIC 15B Diffraction techniques	663
15B.1 X-ray crystallography	663
(a) X-ray diffraction	663
(b) Bragg's law	665

(c) Scattering factors	666
(d) The electron density	666
(e) The determination of structure	669
15B.2 Neutron and electron diffraction	671
Checklist of concepts	672
Checklist of equations	672
TOPIC 15C Bonding in solids	673
15C.1 Metals	673
(a) Close packing	673
(b) Electronic structure of metals	675
15C.2 Ionic solids	677
(a) Structure	677
(b) Energetics 15C.3 Covalent and molecular solids	678 681
Checklist of concepts	682
Checklist of equations	682
<b>TOPIC 15D</b> The mechanical properties of solids	683
Checklist of concepts	685
Checklist of equations	685
TOPIC 15E The electrical properties of solids	686
15E.1 Metallic conductors	686
15E.2 Insulators and semiconductors	687
15E.3 Superconductors	689
Checklist of concepts	690
Checklist of equations	690
<b>TOPIC 15F</b> The magnetic properties of solids	691
15F.1 Magnetic susceptibility	691
15F.2 Permanent and induced magnetic moments	692
15F.3 Magnetic properties of superconductors	693
Checklist of concepts	694
Checklist of equations	694
<b>TOPIC 15G</b> The optical properties of solids	695
15G.1 Excitons	695
15G.2 Metals and semiconductors	696
(a) Light absorption	696
(b) Light-emitting diodes and diode lasers	697
15G.3 Nonlinear optical phenomena	697
Checklist of concepts	698
	363
FOCUS 16 Molecules in motion	707
<b>TOPIC 16A</b> Transport properties of a perfect gas	708
16A.1 The phenomenological equations	708
16A.2 The transport parameters	710
(a) The diffusion coefficient	711
(b) Thermal conductivity	712
(c) Viscosity (d) Effusion	714 715
Checklist of concepts	715
Checklist of equations	716
encember of equations	710

TOPIC 16B Motion in liquids	717
16B.1 Experimental results	717
(a) Liquid viscosity	717
(b) Electrolyte solutions	718
16B.2 The mobilities of ions	719
(a) The drift speed	719
(b) Mobility and conductivity	721
(c) The Einstein relations	722
Checklist of concepts	723
Checklist of equations	723
TOPIC 16C Diffusion	724
16C.1 The thermodynamic view	724
16C.2 The diffusion equation	726
(a) Simple diffusion	726
(b) Diffusion with convection	728
(c) Solutions of the diffusion equation	728
16C.3 The statistical view	730
Checklist of concepts	732
Checklist of equations	732
FOCUS 17 Chemical kinetics	737
<b>TOPIC 17A</b> The rates of chemical reactions	739
17A.1 Monitoring the progress of a reaction	739
(a) General considerations	739
(b) Special techniques	740
17A.2 The rates of reactions	741
(a) The definition of rate	741
(b) Rate laws and rate constants	742
(c) Reaction order	743
(d) The determination of the rate law	744
Checklist of concepts	746
Checklist of equations	746
TOPIC 17B Integrated rate laws	747
17B.1 Zeroth-order reactions	747
17B.2 First-order reactions	747
17B.3 Second-order reactions	749
Checklist of concepts	752
Checklist of equations	752
<b>TOPIC 17C</b> Reactions approaching equilibrium	753
17C.1 First-order reactions approaching equilibrium	753
17C.2 Relaxation methods	754
Checklist of concepts	756
Checklist of equations	756
TOPIC 17D The Arrhenius equation	757
17D.1 The temperature dependence of rate constants	757
17D.2 The interpretation of the Arrhenius parameters	759
(a) A first look at the energy requirements of reactions	759
(b) The effect of a catalyst on the activation energy	760
Checklist of concepts	761

**Checklist of equations** 

(d) The rate constant

TOPIC 17E Reaction mechanisms	762
17E.1 Elementary reactions	762
17E.2 Consecutive elementary reactions	763
17E.3 The steady-state approximation	764
17E.4 The rate-determining step	766
17E.5 Pre-equilibria	767
17E.6 Kinetic and thermodynamic control of reactions	768
Checklist of concepts	768
Checklist of equations	768
<b>TOPIC 17F</b> Examples of reaction mechanisms	769
17F.1 Unimolecular reactions	769
17F.2 Polymerization kinetics	771
(a) Stepwise polymerization	771
(b) Chain polymerization	772
17F.3 Enzyme-catalysed reactions	774
Checklist of concepts Checklist of equations	777 777
	///
TOPIC 17G Photochemistry	778
17G.1 Photochemical processes	778
17G.2 The primary quantum yield	779
17G.3 Mechanism of decay of excited singlet states	780
17G.4 Quenching	781
17G.5 Resonance energy transfer	783
Checklist of concepts	784
Checklist of equations	784
Checklist of equations FOCUS 18 Reaction dynamics	784 793
FOCUS 18 Reaction dynamics	
·	793
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory	<b>793</b> 794
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters	<b>793</b> 794 794
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases	<b>793</b> 794 794 <b>79</b> 4 <b>79</b> 5
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model	<b>793</b> 794 795 795 798 799
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts	<b>793</b> 794 794 795 795 798 799 800
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model	<b>793</b> 794 795 795 798 799
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts	<b>793</b> 794 794 795 795 798 799 800
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations	<b>793</b> 794 795 795 798 799 800 800
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801 801 801
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801 801 801 801 801 801
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation (a) The formulation of the equation	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>801</b> 801 801 801 801 802 803 803 803
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation (a) The formulation of the equation (b) Solutions of the equation	<b>793</b> 794 795 795 <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801 801 801 803 803 803 804
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation (a) The formulation of the equation	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>801</b> 801 801 801 801 802 803 803 803
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation (c) Solutions of the equation (c) Solutions of the equation Checklist of concepts Checklist of concepts Checklist of concepts Checklist of equations	<b>793</b> 794 795 795 <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801 801 801 803 803 803 803 804 804
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation (c) Solutions of the equation (c) Solutions of the equation (c) Sol	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801 801 801 801 803 803 803 803 804 804
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation (c) Solutions of the equation (c) Solutions of the equation Checklist of concepts Checklist of concepts Checklist of concepts Checklist of equations	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801 801 801 802 803 803 804 804 804 805
FOCUS 18 Reaction dynamics TOPIC 18A Collision theory 18A.1 Reactive encounters (a) Collision rates in gases (b) The energy requirement (c) The steric requirement 18A.2 The RRK model Checklist of concepts Checklist of equations TOPIC 18B Diffusion-controlled reactions 18B.1 Reactions in solution (a) Classes of reaction (b) Diffusion and reaction 18B.2 The material-balance equation (a) The formulation of the equation (b) Solutions of the equation (checklist of concepts Checklist of equations TOPIC 18C Transition-state theory 18C.1 The Eyring equation	<b>793</b> 794 795 <b>795</b> <b>798</b> 799 <b>800</b> <b>800</b> <b>800</b> 801 801 801 801 801 801 803 803 803 803 804 804 804 805 806 806

18C.2 Thermodynamic aspects	809
(a) Activation parameters	809
(b) Reactions between ions	811
18C.3 The kinetic isotope effect	812
Checklist of concepts	814
Checklist of equations	814
<b>TOPIC 18D</b> The dynamics of molecular collisions	815
18D.1 Molecular beams	815
(a) Techniques	815
(b) Experimental results	816
18D.2 Reactive collisions	818
(a) Probes of reactive collisions	818
(b) State-to-state reaction dynamics	818
18D.3 Potential energy surfaces	819
18D.4 Some results from experiments and calculations	820
(a) The direction of attack and separation	821
(b) Attractive and repulsive surfaces	821
(c) Quantum mechanical scattering theory	822
Checklist of concepts	823
Checklist of equations	823
TOPIC 18E Electron transfer in homogeneous	
systems	824
18E.1 The rate law	824
18E.2 The role of electron tunnelling	825
18E.3 The rate constant	826
18E.4 Experimental tests of the theory	828
Checklist of concepts	829
Checklist of equations	829
FOCUS 19 Processes at solid surfaces	835
<b>TOPIC 19A</b> An introduction to solid surfaces	836
19A.1 Surface growth	836
19A.2 Physisorption and chemisorption	837
19A.3 Experimental techniques	838
(a) Microscopy	839
(b) Ionization techniques	840
(c) Diffraction techniques	841
(d) Determination of the extent and rates of adsorption	0.42
and desorption	842
Checklist of concepts	843
Checklist of equations	843

TOPIC 19B Adsorption and desorption	844
19B.1 Adsorption isotherms	844
(a) The Langmuir isotherm	844
(b) The isosteric enthalpy of adsorption	845
(c) The BET isotherm	847
(d) The Temkin and Freundlich isotherms	849
19B.2 The rates of adsorption and desorption	850
(a) The precursor state	850
(b) Adsorption and desorption at the molecular level	850
(c) Mobility on surfaces	852
Checklist of concepts	852
Checklist of equations	852
<b>TOPIC 19C</b> Heterogeneous catalysis	853
19C.1 Mechanisms of heterogeneous catalysis	853
(a) Unimolecular reactions	853
(b) The Langmuir–Hinshelwood mechanism	854
(c) The Eley-Rideal mechanism	855
19C.2 Catalytic activity at surfaces	855
Checklist of concepts	856
Checklist of equations	856
TOPIC 19D Processes at electrodes	857
19D.1 The electrode-solution interface	857
19D.2 The current density at an electrode	858
(a) The Butler–Volmer equation	858
(b) Tafel plots	862
19D.3 Voltammetry	862
19D.4 Electrolysis	865
19D.5 Working galvanic cells	865
Checklist of concepts	866
Checklist of equations	866
Resource section	877
1 Mathematical resources	878
1.1 Integration	878
1.2 Differentiation	878
<b>1.3</b> Series expansions	881
2 Quantities and units	882
3 Data	884
4 Character tables	910

Index

## CONVENTIONS

To avoid intermediate rounding errors, but to keep track of values in order to be aware of values and to spot numerical

errors, we display intermediate results as *n.nnn*. . . and round the calculation only at the final step.

## PHYSICAL CHEMISTRY: PEOPLE AND PERSPECTIVES

To watch these interviews, go to this section of the e-book.

## LIST OF TABLES

Table 1A.1	Pressure units	4
Table 1A.2	The (molar) gas constant	9
Table 1B.1	Collision cross-sections	16
Table 1C.1	Second virial coefficients, <i>B</i> /(cm ³ mol ⁻¹ )	20
Table 1C.2	Critical constants of gases	21
Table 1C.3	van der Waals coefficients	22
Table 1C.4	Selected equations of state	23
Table 2A.1	Varieties of work	38
Table 2B.1	Temperature variation of molar heat capacities, $C_{p,m}/(J \text{ K}^{-1} \text{ mol}^{-1}) = a + bT + c/T^2$	48
Table 2C.1	Standard enthalpies of fusion and vaporization at the transition temperature, $\Delta_{trs} H^{\ominus}/(kJ mol^{-1})$	51
Table 2C.2	Enthalpies of reaction and transition	51
Table 2C.3	Standard enthalpies of formation and combustion of organic compounds at 298 K	52
Table 2C.4	Standard enthalpies of formation of inorganic compounds at 298 K	53
Table 2C.5	Standard enthalpies of formation of organic compounds at 298 K	53
Table 2D.1	Expansion coefficients ( $\alpha$ ) and isothermal compressibilities ( $\kappa_{T}$ ) at 298 K	61
Table 2D.2	Inversion temperatures ( $T_{\rm i}$ ), normal freezing ( $T_{\rm i}$ ) and boiling ( $T_{\rm b}$ ) points, and Joule– Thomson coefficients ( $\mu$ ) at 1 bar and 298 K	63
Table 3B.1	Entropies of phase transitions, $\Delta_{trs}S/(J \text{ K}^{-1} \text{ mol}^{-1})$ , at the corresponding normal transition temperatures (at 1 atm)	87
Table 3B.2	The standard enthalpies and entropies of vaporization of liquids at their boiling temperatures	87
Table 3C.1	Standard Third-Law entropies at 298 K	93
Table 3D.1	Standard Gibbs energies of formation at 298 K	100
Table 3E.1	The Maxwell relations	105
Table 5A.1	Henry's law constants for gases in water at 298 K	153
Table 5B.1	Freezing-point ( $K_{\rm f}$ ) and boiling-point ( $K_{\rm b}$ ) constants	160

Table 5F.1	Ionic strength and molality, $I = kb/b^{\ominus}$	191
Table 5F.2	Mean activity coefficients in water at 298 K	192
Table 5F.3	Activities and standard states: a summary	193
Table 6C.1	Varieties of electrode	219
Table 6D.1	Standard potentials at 298 K	226
Table 6D.2	The electrochemical series	229
Table 7E.1	The Hermite polynomials	277
Table 7F.1	The spherical harmonics	288
Table 8A.1	Hydrogenic radial wavefunctions	308
Table 8B.1	Effective nuclear charge	322
Table 8B.2	Atomic radii of main-group elements, <i>r</i> /pm	325
Table 8B.3	Ionic radii, r/pm	326
Table 8B.4	First and second ionization energies	326
Table 8B.5	Electron affinities, $E_a/(kJ mol^{-1})$	327
Table 9A.1	Some hybridization schemes	352
Table 9C.1	Overlap integrals between hydrogenic orbitals	361
Table 9C.2	Bond lengths	364
Table 9C.3	Bond dissociation energies, $N_{_{\rm A}}hc ilde{D}_{_0}$	364
Table 9D.1	Pauling electronegativities	367
Table 10A.1	The notations for point groups	400
Table 10B.1	The $C_{_{2v}}$ character table	412
Table 10B.2	The $C_{3v}$ character table	412
Table 10B.3	The $C_4$ character table	415
Table 11B.1	Moments of inertia	440
Table 11C.1	Properties of diatomic molecules	458
Table 11F.1	Colour, frequency, and energy of light	470
Table 11F.2	Absorption characteristics of some groups and molecules	477
Table 11G.1	Characteristics of laser radiation and their chemical applications	484
Table 12A.1	Nuclear constitution and the nuclear spin quantum number	500
Table 12A.2	Nuclear spin properties	501
Table 12D.1	Hyperfine coupling constants for atoms, <i>a</i> /mT	534

Table 13B.1	Rotational temperatures of diatomic molecules	556
Table 13B.2	Symmetry numbers of molecules	557
Table 13B.3	Vibrational temperatures of diatomic molecules	559
Table 14A.1	Dipole moments and polarizability volumes	599
Table 14B.1	Interaction potential energies	612
Table 14B.2	Lennard-Jones-(12,6) potential energy parameters	616
Table 14C.1	Surface tensions of liquids at 293 K	621
Table 14E.1	Micelle shape and the surfactant parameter	645
Table 15A.1	The seven crystal systems	658
Table 15C.1	The crystal structures of some elements	674
Table 15C.2	Ionic radii, <i>r</i> /pm	678
Table 15C.3	Madelung constants	679
Table 15C.4	Lattice enthalpies at 298 K, $\Delta H_{\rm L}/({\rm kJ~mol^{-1}})$	681
Table 15F.1	Magnetic susceptibilities at 298 K	692
Table 16A.1	Transport properties of gases at 1 atm	709
Table 16B.1	Viscosities of liquids at 298 K	717
Table 16B.2	Ionic mobilities in water at 298 K	720
Table 16B.3	Diffusion coefficients at 298 K, $D/(10^{-9} \text{ m}^2 \text{ s}^{-1})$	722
Table 17B.1	Kinetic data for first-order reactions	748
Table 17B.2	Kinetic data for second-order reactions	749
Table 17B.3	Integrated rate laws	751

Table 17D.1	Arrhenius parameters	757
Table 17G.1	Examples of photochemical processes	778
Table 17G.2	Common photophysical processes	779
Table 17G.3	Values of $R_0$ for some donor–acceptor pairs	783
Table 18A.1	Arrhenius parameters for gas-phase reactions	798
Table 18B.1	Arrhenius parameters for solvolysis reactions in solution	802
Table 19A.1	Maximum observed standard enthalpies of physisorption at 298 K	837
Table 19A.2	Standard enthalpies of chemisorption, $\Delta_{ad} H^{\Theta}/(kJ \text{ mol}^{-1})$ , at 298 K	837
Table 19C.1	Chemisorption abilities	856
Table 19D.1	Exchange-current densities and transfer coefficients at 298 K	861
RESOURCE S	ECTION TABLES	
Table 1.1	Common integrals	879
Table 2.1	Some common units	882
Table 2.2	Common SI prefixes	882
Table 2.3	The SI base units	882
Table 2.4	A selection of derived units	883
Table 0.1	Physical properties of selected materials	885
Table 0.2	Masses and natural abundances of selected nuclides	886

# LIST OF THE CHEMIST'S TOOLKITS

Number	Title	
2A.1	Electrical charge, current, power, and energy	41
2A.2	Partial derivatives	42
3E.1	Exact differentials	105
5B.1	Molality and mole fraction	160
7A.1	Electromagnetic radiation	239
7A.2	Diffraction of waves	246
7B.1	Complex numbers	249
7F.1	Cylindrical coordinates	283
7F.2	Spherical polar coordinates	287
8C.1	Combining vectors	332
9D.1	Determinants	369
9E.1	Matrices	375
11A.1	Exponential and Gaussian functions	434
12B.1	Dipolar magnetic fields	509
12C.1	The Fourier transform	524
16B.1	Electrostatics	720
17B.1	Integration by the method	751

# LIST OF MATERIAL PROVIDED AS *A DEEPER LOOK*

The list of *A deeper look* material that can be found via the e-book. You will also find references to this material where relevant throughout the book.

Number	Title
2D.1	The Joule-Thomson effect and isenthalpic change
3D.1	The Born equation
5F.1	The Debye-Hückel theory
5F.2	The fugacity
7D.1	Particle in a triangle
7F.1	Separation of variables
9B.1	The energies of the molecular orbitals of $\mathrm{H_2^+}$
9F.1	The equations of computational chemistry
9F.2	The Roothaan equations
11A.1	Origins of spectroscopic transitions
11B.1	Rotational selection rules
11C.1	Vibrational selection rules
13D.1	The van der Waals equation of state
14B.1	The electric dipole-dipole interaction
14C.1	The virial and the virial equation of state
15D.1	Establishing the relation between bulk and molecular properties
16C.1	Diffusion in three dimensions
16C.2	The random walk
18A.1	The RRK model
19B.1	The BET isotherm

## LIST OF IMPACTS

The list of *Impacts* that can be found via the e-book. You will also find references to this material where relevant throughout the book.

Number	Focus	Title
1	1	on environmental science: The gas laws and the weather
2	1	on astrophysics: The Sun as a ball of perfect gas
3	2	on technology: Thermochemical aspects of fuels and foods
4	3	on engineering: Refrigeration
5	3	on materials science: Crystal defects
6	4	on technology: Supercritical fluids
7	5	on biology: Osmosis in physiology and biochemistry
8	5	on materials science: Liquid crystals
9	6	on biochemistry: Energy conversion in biological cells
10	6	on chemical analysis: Species-selective electrodes
11	7	on technology: Quantum computing
12	7	on nanoscience: Quantum dots
13	8	on astrophysics: The spectroscopy of stars
14	9	on biochemistry: The reactivity of $O_{2^{\prime}},N_{2^{\prime}}$ and NO
15	9	on biochemistry: Computational studies of biomolecules
16	11	$\ldots$ on astrophysics: Rotational and vibrational spectroscopy of interstellar species
17	11	on environmental science: Climate change
18	12	on medicine: Magnetic resonance imaging
19	12	on biochemistry and nanoscience: Spin probes
20	13	on biochemistry: The helix-coil transition in polypeptides
21	14	on biology: Biological macromolecules
22	14	on medicine: Molecular recognition and drug design
23	15	on biochemistry: Analysis of X-ray diffraction by DNA
24	15	on nanoscience: Nanowires
25	16	on biochemistry: Ion channels
26	17	on biochemistry: Harvesting of light during plant photosynthesis
27	19	on technology: Catalysis in the chemical industry
28	19	on technology: Fuel cells

## ENERGY A First Look

Much of chemistry is concerned with the transfer and transformation of energy, so right from the outset it is important to become familiar with this concept. The first ideas about energy emerged from **classical mechanics**, the theory of motion formulated by Isaac Newton in the seventeenth century. In the twentieth century classical mechanics gave way to **quantum mechanics**, the theory of motion formulated for the description of small particles, such as electrons, atoms, and molecules. In quantum mechanics the concept of energy not only survived but was greatly enriched, and has come to underlie the whole of physical chemistry.

## 1 Force

Classical mechanics is formulated in terms of the forces acting on particles, and shows how the paths of particles respond to them by accelerating or changing direction. Much of the discussion focuses on a quantity called the 'momentum' of the particle.

### (a) Linear momentum

'Translation' is the motion of a particle through space. The **velocity**, v, of a particle is the rate of change of its position. Velocity is a 'vector quantity', meaning that it has both a direction and a magnitude, and is expressed in terms of how fast the particle travels with respect to *x*-, *y*-, and *z*-axes (Fig. 1).



Figure 1 (a) The velocity v is denoted by a vector of magnitude v (the speed) and an orientation that indicates the direction of translational motion. (b) Similarly, the linear momentum p is denoted by a vector of magnitude p and an orientation that corresponds to the direction of motion.

For example, the *x*-component,  $v_x$ , is the particle's rate of change of position along the *x*-axis:

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t}$$
 Component of velocity [definition] (1a)

Similar expressions may be written for the y- and z-components. The magnitude of the velocity, as represented by the length of the velocity vector, is the **speed**, v. Speed is related to the components of velocity by

$$v = (v_x^2 + v_y^2 + v_z^2)^{1/2}$$
 (1b)  
[definition]

The **linear momentum**, p, of a particle, like the velocity, is a vector quantity, but takes into account the mass of the particle as well as its speed and direction. Its components are  $p_x$ ,  $p_y$ , and  $p_z$  along each axis (Fig. 1b) and its magnitude is p. A heavy particle travelling at a certain speed has a greater linear momentum than a light particle travelling at the same speed. For a particle of mass m, the x-component of the linear momentum is given by

$$p_x = mv_x$$
 [definition] (2)

and similarly for the *y*- and *z*-components.

### Brief illustration 1

Imagine a particle of mass *m* attached to a spring. When the particle is displaced from its equilibrium position and then released, it oscillates back and forth about this equilibrium position. This model can be used to describe many features of a chemical bond. In an idealized case, known as the *simple harmonic oscillator*, the displacement from equilibrium x(t) varies with time as

 $x(t) = A\sin 2\pi v t$ 

In this expression, v (nu) is the frequency of the oscillation and A is its amplitude, the maximum value of the displacement along the *x*-axis. The *x*-component of the velocity of the particle is therefore

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}(A\sin 2\pi vt)}{\mathrm{d}t} = 2\pi vA\cos 2\pi vt$$

The *x*-component of the linear momentum of the particle is

$$p_x = mv_x = 2\pi v Am \cos 2\pi v t$$

### (b) Angular momentum

'Rotation' is the change of orientation in space around a central point (the 'centre of mass'). Its description is very similar to that of translation but with 'angular velocity' taking the place of velocity and 'moment of inertia' taking the place of mass. The **angular velocity**,  $\omega$  (omega) is the rate of change of orientation (for example, in radians per second); it is a vector with magnitude  $\omega$ . The **moment of inertia**, *I*, is a measure of the mass that is being swung round by the rotational motion. For a particle of mass *m* moving in a circular path of radius *r*, the moment of inertia is

$$I = mr^2$$
 Moment of inertia  
[definition] (3a)

For a molecule composed of several atoms, each atom *i* gives a contribution of this kind, and the moment of inertia around a given axis is

$$I = \sum_{i} m_{i} r_{i}^{2}$$
(3b)

where  $r_i$  is the perpendicular distance from the mass  $m_i$  to the axis. The rotation of a particle is described by its **angular momentum**, J, a vector with a length that indicates the rate at which the particle circulates and a direction that indicates the axis of rotation (Fig. 2). The components of angular momentum,  $J_x$ ,  $J_y$ , and  $J_z$ , on three perpendicular axes show how much angular momentum is associated with rotation around each axis. The magnitude J of the angular momentum is

$$J = I\omega \qquad \qquad \begin{array}{c} \text{Magnitude of angular momentum} \\ \text{[definition]} \end{array} \tag{4}$$

Brief illustration 2

A CO₂ molecule is linear, and the length of each CO bond is 116 pm. The mass of each ¹⁶O atom is  $16.00m_u$ , where  $m_u = 1.661 \times 10^{-27}$  kg. It follows that the moment of inertia of the molecule around an axis perpendicular to the axis of the molecule and passing through the C atom is

$$I = m_{o}R^{2} + 0 + m_{o}R^{2} = 2m_{o}R^{2}$$
  
= 2 × (16.00 × 1.661 × 10⁻²⁷ kg) × (1.16 × 10⁻¹⁰ m)²  
= 7.15 × 10⁻⁴⁶ kg m²

### (c) Newton's second law of motion

The central concept of classical mechanics is **Newton's second law of motion**, which states that *the rate of change of momentum is equal to the force acting on the particle*. This law underlies the calculation of the **trajectory** of a particle, a statement about where it is and where it is moving at each moment of time. Like



Figure 2 The angular momentum J of a particle is represented by a vector along the axis of rotation and perpendicular to the plane of rotation. The length of the vector denotes the magnitude J of the angular momentum. The direction of motion is clockwise to an observer looking in the direction of the vector.

the velocity and momentum, the **force**, *F*, is a vector quantity with a direction and a magnitude (the 'strength' of the force). Force is reported in newtons, with  $1 \text{ N} = 1 \text{ kg m s}^{-2}$ . For motion along the *x*-axis Newton's second law states that

$$\frac{\mathrm{d}p_x}{\mathrm{d}t} = F_x \tag{5a}$$

where  $F_x$  is the component of the force acting along the *x*-axis. Each component of linear momentum obeys the same kind of equation, so the vector *p* changes with time as

$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \boldsymbol{F}$$
[vector form] (5b)

Equation 5 is the **equation of motion** of the particle, the equation that has to be solved to calculate its trajectory.

#### **Brief illustration 3**

According to 'Hooke's law', the force acting on a particle undergoing harmonic motion (like that in *Brief illustration* 2) is proportional to the displacement and directed opposite to the direction of motion, so in one dimension

 $F_x = -k_f x$ 

where *x* is the displacement from equilibrium and  $k_f$  is the 'force constant', a measure of the stiffness of the spring (or chemical bond). It then follows that the equation of motion of a particle undergoing harmonic motion is  $dp_x/dt = -k_f x$ . Then, because  $p_x = mv_x$  and  $v_x = dx/dt$ , it follows that  $dp_x/dt = mdv_x/dt = mdv_x/dt^2$ . With this substitution, the equation of motion becomes

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -kx$$

Equations of this kind, which are called 'differential equations', are solved by special techniques. In most cases in this text, the solutions are simply stated without going into the details of how they are found.

Similar considerations apply to rotation. The change in angular momentum of a particle is expressed in terms of the **torque**, *T*, a twisting force. The analogue of eqn 5b is then

$$\frac{\mathrm{d}J}{\mathrm{d}t} = T \tag{6}$$

Quantities that describe translation and rotation are analogous, as shown below:

Property	Translation	Rotation
Rate	linear velocity, $\boldsymbol{\nu}$	angular velocity, $\omega$
Resistance to change	mass, m	moment of inertia, I
Momentum	linear momentum, <b>p</b>	angular momentum, J
Influence on motion	force, F	torque, T

## 2 Energy

Energy is a powerful and essential concept in science; nevertheless, its actual nature is obscure and it is difficult to say what it 'is'. However, it can be related to processes that can be measured and can be defined in terms of the measurable process called work.

#### (a) Work

Work, *w*, is done in order to achieve motion against an opposing force. The work needed to be done to move a particle through the infinitesimal distance dx against an opposing force  $F_x$  is

$$dw_{on the particle} = -F_x dx$$
[definition] (7a)

When the force is directed to the left (to negative *x*),  $F_x$  is negative, so for motion to the right (d*x* positive), the work that must be done to move the particle is positive. With force in newtons and distance in metres, the units of work are joules (J), with  $1 \text{ J} = 1 \text{ Nm} = 1 \text{ kgm}^2 \text{ s}^{-2}$ .

The total work that has to be done to move a particle from  $x_{\text{initial}}$  to  $x_{\text{final}}$  is found by integrating eqn 7a, allowing for the possibility that the force may change at each point along the path:

$$w_{\text{on the particle}} = -\int_{x_{\text{initial}}}^{x_{\text{final}}} F_x \mathrm{d}x$$
 Work (7b)

#### **Brief illustration 4**

Suppose that when a bond is stretched from its equilibrium value  $R_e$  to some arbitrary value R there is a restoring force proportional to the displacement  $x = R - R_e$  from the equilibrium length. Then

$$F_x = -k_f (R - R_e) = -k_f x$$

The constant of proportionality,  $k_i$ , is the force constant introduced in *Brief illustration* 3. The total work needed to move an atom so that the bond stretches from zero displacement ( $x_{initial} = 0$ ), when the bond has its equilibrium length, to a displacement  $x_{final} = R_{final} - R_e$  is

$$w_{\text{on an atom}} = -\int_{0}^{x_{\text{final}}} (-k_{\text{f}}x) \, \mathrm{d}x = k_{\text{f}} \int_{0}^{x_{\text{final}}} x \, \mathrm{d}x$$
$$= \frac{1}{2} k_{\text{f}} x_{\text{final}}^{2} = \frac{1}{2} k_{\text{f}} (R_{\text{final}} - R_{\text{c}})^{2}$$

(All the integrals required in this book are listed in the *Resource section*.) The work required increases as the square of the displacement: it takes four times as much work to stretch a bond through 20 pm as it does to stretch the same bond through 10 pm.

### (b) The definition of energy

Now we get to the core of this discussion. Energy *is the capacity to do work*. An object with a lot of energy can do a lot of work; one with little energy can do only little work. Thus, a spring that is compressed can do a lot of work as it expands, so it is said to have a lot of energy. Once the spring is expanded it can do only a little work, perhaps none, so it is said to have only a little energy. The SI unit of energy is the same as that of work, namely the joule, with  $1 J = 1 \text{ kg m}^2 \text{s}^{-2}$ .

A particle may possess two kinds of energy, kinetic energy and potential energy. The **kinetic energy**,  $E_k$ , of a particle is the energy it possesses as a result of its motion. For a particle of mass *m* travelling at a speed v,

$$E_{\rm k} = \frac{1}{2}mv^2$$
 (8a)

A particle with a lot of kinetic energy can do a lot of work, in the sense that if it collides with another particle it can cause it to move against an opposing force. Because the magnitude of the linear momentum and speed are related by p = mv, so v = p/m, an alternative version of this relation is

$$E_{\rm k} = \frac{p^2}{2m} \tag{8b}$$

It follows from Newton's second law that if a particle is initially stationary and is subjected to a constant force then its linear momentum increases from zero. Because the magnitude of the applied force may be varied at will, the momentum and therefore the kinetic energy of the particle may be increased to any value.

The **potential energy**,  $E_p$  or V, of a particle is the energy it possesses as a result of its position. For instance, a stationary weight high above the surface of the Earth can do a lot of work as it falls to a lower level, so is said to have more energy, in this case potential energy, than when it is resting on the surface of the Earth.

This definition can be turned around. Suppose the weight is returned from the surface of the Earth to its original height. The work needed to raise it is equal to the potential energy that it once again possesses. For an infinitesimal change in height, dx, that work is  $-F_x dx$ . Therefore, the infinitesimal change in potential energy is  $dE_p = -F_x dx$ . This equation can be rearranged into a relation between the force and the potential energy:

$$F_x = -\frac{dE_p}{dx}$$
 or  $F_x = -\frac{dV}{dx}$  Relation of force to potential energy (9)

No *universal* expression for the dependence of the potential energy on position can be given because it depends on the type of force the particle experiences. However, there are two very important specific cases where an expression can be given. For a particle of mass m at an altitude h close to the surface of the Earth, the **gravitational potential energy** is

$$E_{\rm p}(h) = E_{\rm p}(0) + mgh$$
 Gravitational potential energy  
[close to surface of the Earth] (10)

where g is the acceleration of free fall (g depends on location, but its 'standard value' is close to 9.81 m s⁻²). The zero of potential energy is arbitrary. For a particle close to the surface of the Earth, it is common to set  $E_p(0) = 0$ .

The other very important case (which occurs whenever the structures of atoms and molecules are discussed), is the electrostatic potential energy between two electric charges  $Q_1$ and  $Q_2$  at a separation *r* in a vacuum. This **Coulomb potential** energy is

$$E_{\rm p}(r) = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r}$$
 Coulomb potential energy  
[in a vacuum] (11)

Charge is expressed in coulombs (C). The constant  $\varepsilon_0$  (epsilon zero) is the **electric constant** (or *vacuum permittivity*), a fundamental constant with the value  $8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ . It is conventional (as in eqn 11) to set the potential energy equal to zero at infinite separation of charges.

The **total energy** of a particle is the sum of its kinetic and potential energies:

$$E = E_{k} + E_{p}$$
, or  $E = E_{k} + V$  Total energy (12)

A fundamental feature of nature is that *energy is conserved*; that is, energy can neither be created nor destroyed. Although

energy can be transformed from one form to another, its total is constant.

An alternative way of thinking about the potential energy arising from the interaction of charges is in terms of the **potential**, which is a measure of the 'potential' of one charge to affect the potential energy of another charge when the second charge is brought into its vicinity. A charge  $Q_1$  gives rise to a **Coulomb potential**  $\phi_1$  (phi) such that the potential energy of the interaction with a second charge  $Q_2$  is  $Q_2\phi_1(r)$ . Comparison of this expression with eqn 11 shows that

$$\phi_{1}(r) = \frac{Q_{1}}{4\pi\varepsilon_{0}r}$$
Coulomb potential  
[in a vacuum] (13)

The units of potential are joules per coulomb,  $JC^{-1}$ , so when the potential is multiplied by a charge in coulombs, the result is the potential energy in joules. The combination joules per coulomb occurs widely and is called a volt (V):  $1 V = 1 JC^{-1}$ .

The language developed here inspires an important alternative energy unit, the **electronvolt** (eV): 1 eV is defined as the potential energy acquired when an electron is moved through a potential difference of 1 V. The relation between electronvolts and joules is

$$1 \,\mathrm{eV} = 1.602 \times 10^{-19}$$
 J

Many processes in chemistry involve energies of a few electronvolts. For example, to remove an electron from a sodium atom requires about 5 eV.

#### **3 Temperature**

A key idea of quantum mechanics is that the translational energy of a molecule, atom, or electron that is confined to a region of space, and any rotational or vibrational energy that a molecule possesses, is **quantized**, meaning that it is restricted to certain discrete values. These permitted energies are called **energy levels**. The values of the permitted energies depend on the characteristics of the particle (for instance, its mass) and for translation the extent of the region to which it is confined. The allowed energies are widest apart for particles of small mass confined to small regions of space. Consequently, quantization must be taken into account for electrons bound to nuclei in atoms and molecules. It can be ignored for macroscopic bodies, for which the separation of all kinds of energy levels is so small that for all practical purposes their energy can be varied virtually continuously.

Figure 3 depicts the typical energy level separations associated with rotational, vibrational, and electronic motion. The separation of rotational energy levels (in small molecules, about  $10^{-21}$  J, corresponding to about 0.6 kJ mol⁻¹) is smaller than that of vibrational energy levels (about  $10^{-20}$ – $10^{-19}$  J, or



Figure 3 The energy level separations typical of four types of system. (1  $zJ = 10^{-21}$  J; in molar terms, 1 zJ is equivalent to about 0.6 kJ mol⁻¹.)

6-60 kJ mol⁻¹), which itself is smaller than that of electronic energy levels (about  $10^{-18}$  J, corresponding to about 600 kJ mol⁻¹).

#### (a) The Boltzmann distribution

The continuous thermal agitation that molecules experience in a sample ensures that they are distributed over the available energy levels. This distribution is best expressed in terms of the occupation of states. The distinction between a state and a level is that a given level may be comprised of several states all of which have the same energy. For instance, a molecule might be rotating clockwise with a certain energy, or rotating counterclockwise with the same energy. One particular molecule may be in a state belonging to a low energy level at one instant, and then be excited into a state belonging to a high energy level a moment later. Although it is not possible to keep track of which state each molecule is in, it is possible to talk about the average number of molecules in each state. A remarkable feature of nature is that, for a given array of energy levels, how the molecules are distributed over the states depends on a single parameter, the 'temperature', T.

The **population** of a state is the average number of molecules that occupy it. The populations, whatever the nature of the states (translational, rotational, and so on), are given by a formula derived by Ludwig Boltzmann and known as the **Boltzmann distribution**. According to Boltzmann, the ratio of the populations of states with energies  $\varepsilon_i$  and  $\varepsilon_i$  is

$$\frac{N_i}{N_j} = e^{-(\varepsilon_i - \varepsilon_j)/kT}$$
Boltzmann distribution (14a)

where *k* is **Boltzmann's constant**, a fundamental constant with the value  $k = 1.381 \times 10^{-23} \text{ J K}^{-1}$  and *T* is the **temperature**, the parameter that specifies the relative populations of states, regardless of their type. Thus, when T = 0, the populations of all states other than the lowest state (the 'ground state') of the



Figure 4 The Boltzmann distribution of populations (represented by the horizontal bars) for a system of five states with different energies as the temperature is raised from zero to infinity. *Interact with the dynamic version of this graph in the e-book*.

molecule are zero. As the value of *T* is increased (the 'temperature is raised'), the populations of higher energy states increase, and the distribution becomes more uniform. This behaviour is illustrated in Fig. 4 for a system with five states of different energy. As predicted by eqn 14a, as the temperature approaches infinity  $(T \rightarrow \infty)$ , the states become equally populated.

In chemical applications it is common to use molar energies,  $E_{m,i}$ , with  $E_{m,i} = N_A \varepsilon_i$ , where  $N_A$  is Avogadro's constant. Then eqn 14a becomes

$$\frac{N_i}{N_j} = e^{-(E_{m,i}/N_A - E_{m,j}/N_A)/kT} = e^{-(E_{m,i} - E_{m,j})/N_A kT} = e^{-(E_{m,i} - E_{m,j})/RT}$$
(14b)

where  $R = N_A k$ . The constant *R* is known as the 'gas constant'; it appears in expressions of this kind when molar, rather than molecular, energies are specified. Moreover, because it is simply the molar version of the more fundamental Boltzmann constant, it occurs in contexts other than gases.

#### **Brief illustration 5**

Methylcyclohexane molecules may exist in one of two conformations, with the methyl group in either an equatorial or axial position. The equatorial form lies  $6.0 \text{ kJ mol}^{-1}$  lower in energy than the axial form. The relative populations of molecules in the axial and equatorial states at 300 K are therefore

$$\frac{N_{\text{axial}}}{N_{\text{equatorial}}} = e^{-(E_{\text{m,axial}} - E_{\text{m,equatorial}})/RT}$$
$$= e^{-(6.0 \times 10^3 \text{ J} \text{ mol}^{-1})/(8.3145 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}) \times (300 \text{ K})}$$
$$= 0.090$$

The number of molecules in an axial conformation is therefore just 9 per cent of those in the equatorial conformation.

The important features of the Boltzmann distribution to bear in mind are:

- The distribution of populations is an exponential function of energy and the temperature. As the temperature is increased, states with higher energy become progressively more populated.
- States closely spaced in energy compared to *kT* are more populated than states that are widely spaced compared to *kT*.

The energy spacings of translational and rotational states are typically much less than kT at room temperature. As a result, many translational and rotational states are populated. In contrast, electronic states are typically separated by much more than kT. As a result, only the ground electronic state of a molecule is occupied at normal temperatures. Vibrational states are widely separated in small, stiff molecules and only the ground vibrational state is populated. Large and flexible molecules are also found principally in their ground vibrational state, but might have a few higher energy vibrational states populated at normal temperatures.

#### (b) The equipartition theorem

For gases consisting of non-interacting particles it is often possible to calculate the average energy associated with each type of motion by using the **equipartition theorem**. This theorem arises from a consideration of how the energy levels associated with different kinds of motion are populated according to the Boltzmann distribution. The theorem states that

At thermal equilibrium, the average value of each quadratic contribution to the energy is  $\frac{1}{2}kT$ .

A 'quadratic contribution' is one that is proportional to the square of the momentum or the square of the displacement from an equilibrium position. For example, the kinetic energy of a particle travelling in the *x*-direction is  $E_k = p_x^2/2m$ . This motion therefore makes a contribution of  $\frac{1}{2}kT$  to the energy.

The energy of vibration of atoms in a chemical bond has *two* quadratic contributions. One is the kinetic energy arising from the back and forth motion of the atoms. Another is the potential energy which, for the harmonic oscillator, is  $E_p = \frac{1}{2}k_f x^2$  and is a second quadratic contribution. Therefore, the total average energy is  $\frac{1}{2}kT + \frac{1}{2}kT = kT$ .

The equipartition theorem applies only if many of the states associated with a type of motion are populated. At temperatures of interest to chemists this condition is always met for translational motion, and is usually met for rotational motion. Typically, the separation between vibrational and electronic states is greater than for rotation or translation, and as only a few states are occupied (often only one, the ground state), the equipartition theorem is unreliable for these types of motion.

#### **Checklist of concepts**

- □ 1. Newton's second law of motion states that the rate of change of momentum is equal to the force acting on the particle.
- □ 2. Work is done in order to achieve motion against an opposing force. Energy is the capacity to do work.
- □ 3. The **kinetic energy** of a particle is the energy it possesses as a result of its motion.
- □ 4. The **potential energy** of a particle is the energy it possesses as a result of its position.
- □ 5. The total energy of a particle is the sum of its kinetic and potential energies.

- $\Box$  6. The Coulomb potential energy between two charges separated by a distance *r* varies as 1/r.
- □ 7. The energy levels of confined particles are quantized, as are those of rotating or vibrating molecules.
- □ 8. The **Boltzmann distribution** is a formula for calculating the relative populations of states of various energies.
- □ 9. The equipartition theorem states that for a sample at thermal equilibrium the average value of each quadratic contribution to the energy is  $\frac{1}{2}kT$ .

### **Checklist of equations**

Property	Equation	Comment	Equation number
Component of velocity in $x$ direction	$v_x = dx/dt$	Definition; likewise for $y$ and $z$	la
Component of linear momentum in $x$ direction	$p_x = mv_x$	Definition; likewise for $y$ and $z$	2
Moment of inertia	$I = mr^2$	Point particle	3a
	$I = \sum_{i} m_{i} r_{i}^{2}$	Molecule	3b
Angular momentum	$J = I\omega$		4
Equation of motion	$F_x = \mathrm{d}p_x/\mathrm{d}t$	Motion along <i>x</i> -direction	5a
	$F = \mathrm{d}p/\mathrm{d}t$	Newton's second law of motion	5b
	T = dJ/dt	Rotational motion	6
Work opposing a force in the $x$ direction	$\mathrm{d}w = -F_x\mathrm{d}x$	Definition	7a
Kinetic energy	$E_{\rm k} = \frac{1}{2}mv^2$	Definition; $v$ is the speed	8a
Potential energy and force	$F_x = -dV/dx$	One dimension	9
Coulomb potential energy	$E_{\rm p}(r) = Q_{\rm a}Q_{\rm a}/4\pi\varepsilon_0 r$	In a vacuum	11
Coulomb potential	$\phi_1(r) = Q_1/4\pi\varepsilon_0 r$	In a vacuum	13
Boltzmann distribution	$N_i/N_j = e^{-(\varepsilon_i - \varepsilon_j)/kT}$		14a

# Atkins' PHYSICAL CHEMISTRY

# FOCUS 1 The properties of gases

A gas is a form of matter that fills whatever container it occupies. This Focus establishes the properties of gases that are used throughout the text.

#### **1A** The perfect gas

This Topic is an account of an idealized version of a gas, a 'perfect gas', and shows how its equation of state may be assembled from the experimental observations summarized by Boyle's law, Charles's law, and Avogadro's principle.

1A.1 Variables of state; 1A.2 Equations of state

#### **1C** Real gases

The perfect gas is a starting point for the discussion of properties of all gases, and its properties are invoked throughout thermodynamics. However, actual gases, 'real gases', have properties that differ from those of perfect gases, and it is necessary to be able to interpret these deviations and build the effects of molecular attractions and repulsions into the model. The discussion of real gases is another example of how initially primitive models in physical chemistry are elaborated to take into account more detailed observations.

 $1C.1\,$  Deviations from perfect behaviour;  $1C.2\,$  The van der Waals equation

#### 1B The kinetic model

A central feature of physical chemistry is its role in building models of molecular behaviour that seek to explain observed phenomena. A prime example of this procedure is the development of a molecular model of a perfect gas in terms of a collection of molecules (or atoms) in ceaseless, essentially random motion. As well as accounting for the gas laws, this model can be used to predict the average speed at which molecules move in a gas, and its dependence on temperature. In combination with the Boltzmann distribution (see *Energy: A first look*), the model can also be used to predict the spread of molecular speeds and its dependence on molecular mass and temperature.

1B.1 The model; 1B.2 Collisions

#### What is an application of this material?

The perfect gas law and the kinetic theory can be applied to the study of phenomena confined to a reaction vessel or encompassing an entire planet or star. In *Impact* 1, accessed via the e-book, the gas laws are used in the discussion of meteorological phenomena—the weather. *Impact* 2, accessed via the e-book, examines how the kinetic model of gases has a surprising application: to the discussion of dense stellar media, such as the interior of the Sun.

Go to the e-book for videos that feature the derivation and interpretation of equations, and applications of this material.

## **TOPIC 1A** The perfect gas

#### > Why do you need to know this material?

The relation between the pressure, volume, and temperature of a perfect gas is used extensively in the development of quantitative theories about the physical and chemical behaviour of real gases. It is also used extensively throughout thermodynamics.

#### What is the key idea?

The perfect gas law, which describes the relation between the pressure, volume, temperature, and amount of substance, is a limiting law that is obeyed increasingly well as the pressure of a gas tends to zero.

#### What do you need to know already?

You need to know how to handle quantities and units in calculations, as reviewed in the *Resource section*.

The properties of gases were among the first to be established quantitatively (largely during the seventeenth and eighteenth centuries) when the technological requirements of travel in balloons stimulated their investigation. This Topic reviews how the physical state of a gas is described using variables such as pressure and temperature, and then discusses how these variables are related.

#### 1A.1 Variables of state

The **physical state** of a sample of a substance, its physical condition, is defined by its physical properties. Two samples of the same substance that have the same physical properties are said to be 'in the same state'. The **variables of state**, the variables needed to specify the state of a system, are the amount of substance it contains, *n*; the volume it occupies, *V*; the pressure, *p*; and the temperature, *T*.

#### 1A.1(a) Pressure and volume

The **pressure**, p, that an object experiences is defined as the force, F, applied divided by the area, A, to which that force is applied. A gas exerts a pressure on the walls of its container as a result of the collisions between the molecules and the walls:

these collisions are so numerous that the force, and hence the pressure, is steady.

The SI unit of pressure is the *pascal*, Pa, defined as  $1 \text{ Pa} = 1 \text{ Nm}^{-2} = 1 \text{ kgm}^{-1} \text{ s}^{-2}$ . Several other units are still widely used, and the relations between them are given in Table 1A.1. Because many physical properties depend on the pressure acting on a sample, it is appropriate to select a certain value of the pressure to report their values. The **standard pressure**,  $p^{\circ}$ , for reporting physical quantities is currently defined as  $p^{\circ} = 1$  bar (that is,  $10^5 \text{ Pa}$ ) exactly. This pressure is close to, but not the same as, 1 atm, which is typical for everyday conditions.

Consider the arrangement shown in Fig. 1A.1 where two gases in separate containers share a common movable wall. In Fig. 1A.1a the gas on the left is at higher pressure than that on the right, and so the force exerted on the wall by the gas on the left is greater than that exerted by the gas on the right. As a result, the wall moves to the right, the pressure on the left

Table 1A.1 Pressure units*

Name	Symbol	Value
pascal	Pa	$1 \text{ Pa} = 1 \text{ Nm}^{-2}, 1 \text{ kgm}^{-1} \text{ s}^{-2}$
bar	bar	$1 \text{ bar} = 10^5 \text{ Pa}$
atmosphere	atm	1 atm = 101.325 kPa
torr	Torr	<b>1</b> Torr = (101 325/760) Pa = 133.32Pa
millimetres of mercury	mmHg	1  mmHg = 133.322 Pa
pounds per square inch	psi	1 psi = 6.894757 kPa

* Values in bold are exact.



Figure 1A.1 (a) When a region of high pressure is separated from a region of low pressure by a movable wall, the wall will be pushed into the low pressure region until the pressures are equal. (b) When the two pressures are identical, the wall will stop moving. At this point there is mechanical equilibrium between the two regions. decreases, and that on the right increases. Eventually (as in Fig. 1A.1b) the two pressures become equal and the wall no longer moves. This condition of equality of pressure on either side of a movable wall is a state of **mechanical equilibrium** between the two gases.

The pressure exerted by the atmosphere is measured with a *barometer*. The original version of a barometer (which was invented by Torricelli, a student of Galileo) involved taking a glass tube, sealed at one end, filling it with mercury and then up-ending it (without letting in any air) into a bath of mercury. The pressure of the atmosphere acting on the surface of the mercury in the bath supports a column of mercury of a certain height in the tube: the pressure at the base of the column, due to the mercury in the tube, is equal to the atmospheric pressure. As the atmospheric pressure changes, so does the height of the column.

The pressure of gas in a container, and also now the atmosphere, is measured by using a pressure gauge, which is a device with properties that respond to pressure. For instance, in a *Bayard–Alpert pressure gauge* the molecules present in the gas are ionized and the resulting current of ions is interpreted in terms of the pressure. In a *capacitance manometer*, two electrodes form a capacitor. One electrode is fixed and the other is a diaphragm which deflects as the pressure changes. This deflection causes a change in the capacitance, which is measured and interpreted as a pressure. Certain semiconductors also respond to pressure and are used as transducers in solid-state pressure gauges, including those in mobile phones (cell phones).

The volume, V, of a gas is a measure of the extent of the region of space it occupies. The SI unit of volume is  $m^3$ .

#### 1A.1(b) **Temperature**

The temperature is formally a property that determines in which direction energy will flow as heat when two samples are placed in contact through thermally conducting walls: energy flows from the sample with the higher temperature to the sample with the lower temperature. The symbol T denotes the **thermodynamic temperature**, which is an absolute scale with T = 0 as the lowest point. Temperatures above T = 0 are expressed by using the **Kelvin scale**, in which the gradations of temperature are expressed in *kelvins* (K; not °K). Until 2019, the Kelvin scale was defined by setting the triple point of water (the temperature at which ice, liquid water, and water vapour are in mutual equilibrium) at exactly 273.16 K. The scale has now been redefined by referring it to the more precisely known value of the Boltzmann constant.

There are many devices used to measure temperature. They vary from simple devices that measure the expansion of a liquid along a tube, as commonly found in laboratories, to electronic devices where the resistance of a material or the potential difference developed at a junction is related to the temperature. The **Celsius scale** of temperature is commonly used to express temperatures. In this text, temperatures on the Celsius scale are denoted  $\theta$  (theta) and expressed in *degrees Celsius* (°C). The thermodynamic and Celsius temperatures are related by the exact expression

 $T/K = \theta/^{\circ}C + 273.15$  (1A.1)

This relation is the definition of the Celsius scale in terms of the more fundamental Kelvin scale. It implies that a difference in temperature of 1  $^{\circ}$ C is equivalent to a difference of 1 K.

The lowest temperature on the thermodynamic temperature scale is written T = 0, not T = 0 K. This scale is absolute, and the lowest temperature is 0 regardless of the size of the divisions on the scale (just as zero pressure is denoted p = 0, regardless of the size of the units, such as bar or pascal). However, it is appropriate to write 0 °C because the Celsius scale is not absolute.

#### 1A.1(c) Amount

In day-to-day conversation 'amount' has many meanings but in physical science it has a very precise definition. The **amount of substance**, *n*, is a measure of the number of specified entities present in the sample; these entities may be atoms, or molecules, or formula units. The SI unit of amount of substance is the mole (mol). The amount of substance is commonly referred to as the 'chemical amount' or simply 'amount'.

Until 2019 the mole was defined as the number of carbon atoms in exactly 12 g of carbon-12. However, it has been redefined such that 1 mol of a substance contains exactly  $6.02214076 \times 10^{23}$  entities. The number of entities per mole is called **Avogadro's constant**,  $N_A$ . It follows from the definition of the mole that  $N_A = 6.02214076 \times 10^{23} \text{ mol}^{-1}$ . Note that  $N_A$  is a constant with units, not a pure number. Also, it is not correct to specify amount as the 'number of moles': the correct phrase is 'amount in moles'.

The amount of substance is related to the mass, m, of the substance through the **molar mass**, M, which is the mass per mole of its atoms, its molecules, or its formula units. The SI unit of molar mass is kg mol⁻¹ but it is more common to use g mol⁻¹. The amount of substance of specified entities in a sample can readily be calculated from its mass by using

$$n = \frac{m}{M}$$
 Amount of substance (1A.2)

#### 1A.1(d) Intensive and extensive properties

Suppose a sample is divided into smaller samples. If a property of the original sample has a value that is equal to the sum of its values in all the smaller samples, then it is said to be an **extensive** property. Amount, mass, and volume are examples of extensive properties. If a property retains the same value as in the original sample for all the smaller samples, then it is said to be **intensive**. Temperature and pressure are examples of intensive properties.

The value of a property X divided by the amount n gives the molar value of that property  $X_m$ : that is,  $X_m = X/n$ . All molar properties are intensive, whereas X and n are both extensive. The mass density,  $\rho = m/V$ , is also intensive.

#### Example 1A.1 Specifying the variables of state

When released into a certain vessel, 0.560 mg of nitrogen gas is observed to exert a pressure of 10.4 Torr at a temperature of 25.2 °C. Express the pressure in pascals (Pa) and the thermodynamic temperature in kelvins (K). Also calculate the amount of  $N_2$ , and the number of  $N_2$  molecules present. Take the molar mass of  $N_2$  as 14.01 g mol⁻¹.

*Collect your thoughts* The SI unit of pressure is Pa, and the conversion from Torr to Pa is given in Table 1A.1; the conversion of °C to K is given by eqn 1A.1. The amount is computed using eqn 1A.2.

*The solution* From the table 1 Torr = 133.32...Pa, so a pressure of 10.4 Torr is converted to Pa through

 $p = (10.4 \text{ Torr}) \times (133.32... \text{ Pa Torr}^{-1}) = 1.39 \times 10^3 \text{ Pa}$ 

Note the inclusion of units for each quantity, and the way in which the units cancel to give the required result. The temperature in °C is converted to K using eqn 1A.1.

 $T/K = \theta/^{\circ}C + 273.15 = (25.2 \circ C)/^{\circ}C + 273.15 = 298$ 

Thus T = 298 K. The amount is calculated by using eqn 1A.2: note the conversion of the mass from mg to g so as to match the units of the molar mass.

$$n = \frac{m}{M} = \frac{0.560 \times 10^{-3} \text{ g}}{14.01 \text{ g mol}^{-1}} = 3.99... \times 10^{-5} \text{ mol} = 4.00 \times 10^{-5} \text{ mol}$$

Here the intermediate result is truncated at (not rounded to) three figures, but the final result is rounded to three figures.

The number of molecules is found by multiplying the amount by Avogadro's constant.

$$N = nN_{\rm A} = (3.99... \times 10^{-5} \text{ mol}) \times (6.0221 \times 10^{23} \text{ mol}^{-1})$$
  
= 2.41×10¹⁹

The result, being a pure number, is dimensionless.

Self-test 1A.1 Express the pressure in bar and in atm.

mts  $^{2-01}\times7$ £.1 to red  $^{2-01}\times9$ £.1:19wenA

#### Exercises

E1A.1 Express (i) 108 kPa in torr and (ii) 0.975 bar in atmospheres.

**E1A.2** What mass of methanol (molar mass  $32.04 \text{ g mol}^{-1}$ ) contains the same number of molecules as 1.00 g of ethanol (molar mass  $46.07 \text{ g mol}^{-1}$ )?

#### 1A.2 Equations of state

Although in principle the state of a pure substance is specified by giving the values of n, V, p, and T, it has been established experimentally that it is sufficient to specify only three of these variables because doing so fixes the value of the fourth variable. That is, it is an experimental fact that each substance is described by an **equation of state**, an equation that interrelates these four variables.

The general form of an equation of state is

$$p = f(T, V, n)$$
 General form of an equation of state (1A.3)

This equation means that if the values of *n*, *T*, and *V* are known for a particular substance, then the pressure has a fixed value. Each substance is described by its own equation of state, but the explicit form of the equation is known in only a few special cases. One very important example is the equation of state of a 'perfect gas', which has the form p = nRT/V, where *R* is a constant independent of the identity of the gas.

### 1A.2(a) The empirical basis of the perfect gas law

The equation of state of a perfect gas was established by combining a series of empirical laws that arose from experimental observations. These laws can be summarized as

Boyle's law:	pV = constant,  at constant  n, T	
Charles's law:	$V = \text{constant} \times T$ , at constant <i>n</i> , <i>p</i>	
	$p = \text{constant} \times T$ , at constant $n, V$	
Avogadro's principle:	$V = \text{constant} \times n$ , at constant $p, T$	

Boyle's and Charles's laws are strictly true only in the limit that the pressure goes to zero  $(p \rightarrow 0)$ : they are examples of a **limiting law**, a law that is strictly true only in a certain limit. However, these laws are found to be reasonably reliable at normal pressures  $(p \approx 1 \text{ bar})$  and are used throughout chemistry. Avogadro's principle is so-called because it supposes that the system consists of molecules whereas a law is strictly a summary of observations and independent of any assumed model.

Figure 1A.2 depicts the variation of the pressure of a sample of gas as the volume is changed. Each of the curves in the graph corresponds to a single temperature and hence is called an **isotherm**. According to Boyle's law, the isotherms of gases are hyperbolas (curves obtained by plotting *y* against *x* with xy = constant, or y = constant/x). An alternative depiction, a plot of pressure against 1/volume, is shown in Fig. 1A.3; in such a plot the isotherms are straight lines because *p* is proportional to 1/*V*. Note that all the lines extrapolate to the point p = 0, 1/V = 0 but have slopes that depend on the temperature.

The linear variation of volume with temperature summarized by Charles's law is illustrated in Fig. 1A.4. The lines in this



Figure 1A.2 The pressure-volume dependence of a fixed amount of gas that obeys Boyle's law. Each curve is for a different temperature and is called an isotherm; each isotherm is a hyperbola (pV = constant).



Figure 1A.3 Straight lines are obtained when the pressure of a gas obeying Boyle's law is plotted against 1/V at constant temperature. These lines extrapolate to zero pressure at 1/V = 0.

illustration are examples of **isobars**, or lines showing the variation of properties at constant pressure. All these isobars extrapolate to the point V = 0, T = 0 and have slopes that depend on the pressure. Figure 1A.5 illustrates the linear variation of pressure with temperature. The lines in this diagram are **isochores**, or lines showing the variation of properties at constant volume, and they all extrapolate to p = 0, T = 0.

The empirical observations summarized by Boyle's and Charles's laws and Avogadro's principle can be combined into a single expression:

#### $pV = \text{constant} \times nT$

This expression is consistent with Boyle's law, pV = constantwhen *n* and *T* are constant. It is also consistent with both forms of Charles's law:  $p \propto T$  when *n* and *V* are held constant, and  $V \propto T$  when *n* and *p* are held constant. The expression also agrees with Avogadro's principle,  $V \propto n$  when *p* and *T* are constant. The constant of proportionality, which is found



Figure 1A.4 The volume-temperature dependence of a fixed amount of gas that obeys Charles's law. Each line is for a different pressure and is called an isobar. Each isobar is a straight line and extrapolates to zero volume at T = 0, corresponding to  $\theta = -273.15$  °C.



Figure 1A.5 The pressure-temperature dependence of a fixed amount of gas that obeys Charles's law. Each line is for a different volume and is called an isochore. Each isochore is a straight line and extrapolates to zero pressure at T = 0.

experimentally to be the same for all gases, is denoted *R* and called the (molar) **gas constant**. The resulting expression

$$pV = nRT$$
 Perfect gaslaw (1A.4)

is the **perfect gas law** (or *perfect gas equation of state*). A gas that obeys this law exactly under all conditions is called a **perfect gas** (or *ideal gas*). Although the term 'ideal gas' is used widely, in this text we prefer to use 'perfect gas' because there is an important and useful distinction between ideal and perfect. The distinction is that in an 'ideal system' all the interactions between molecules are the same; in a 'perfect system', not only are they the same but they are also zero.

For a **real gas**, any actual gas, the perfect gas law is approximate, but the approximation becomes better as the pressure of the gas approaches zero. In the limit that the pressure goes to zero,  $p \rightarrow 0$ , the equation is exact. The value of the gas constant *R* can be determined by evaluating R = pV/nT for a gas in the limit of zero pressure (to guarantee that it is behaving



Figure 1A.6 A region of the *p*,*V*,*T* surface of a fixed amount of perfect gas molecules. The points forming the surface represent the only states of the gas that can exist.



Figure 1A.7 Sections through the surface shown in Fig. 1A.6 at constant temperature give the isotherms shown in Fig. 1A.2. Sections at constant pressure give the isobars shown in Fig. 1A.4. Sections at constant volume give the isochores shown in Fig. 1A.5.

perfectly). As remarked in *Energy: A first look*, the modern procedure is to note that  $R = N_A k$ , where k is Boltzmann's constant and  $N_A$  has its newly defined value, as indicated earlier.

The surface in Fig. 1A.6 is a plot of the pressure of a fixed amount of perfect gas molecules against its volume and thermodynamic temperature as given by eqn 1A.4. The surface depicts the only possible states of a perfect gas: the gas cannot exist in states that do not correspond to points on the surface. Figure 1A.7 shows how the graphs in Figs. 1A.2, 1A.4, and 1A.5 correspond to sections through the surface.

#### Example 1A.2 Using the perfect gas law

Nitrogen gas is introduced into a vessel of constant volume at a pressure of 100 atm and a temperature of 300 K. The temperature is then raised to 500 K. What pressure would the gas then exert, assuming that it behaved as a perfect gas?

*Collect your thoughts* The pressure is expected to be greater on account of the increase in temperature. The perfect gas law in the form pV/nT = R implies that if the conditions are changed

from one set of values to another, then because pV/nT is equal to a constant, the two sets of values are related by the 'combined gas law'

$$\frac{p_1 V_1}{n_1 T_1} = \frac{p_2 V_2}{n_2 T_2}$$
Combined gas law (1A.5)

In this case the volume is the same before and after heating, so  $V_1 = V_2$  and these terms cancel. Likewise the amount does not change upon heating, so  $n_1 = n_2$  and these terms also cancel.

*The solution* Cancellation of the volumes and amounts on each side of the combined gas law results in

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

which can be rearranged into

$$p_2 = \frac{T_2}{T_1} \times p_1$$

Substitution of the data then gives

$$p_2 = \frac{500 \text{ K}}{300 \text{ K}} \times (100 \text{ atm}) = 167 \text{ atm}$$

*Self-test 1A.2* What temperature would be needed for the same sample to exert a pressure of 300 atm?

Апѕиет: 900 К

The molecular explanation of Boyle's law is that if a sample of gas is compressed to half its volume, then twice as many molecules strike the walls in a given period of time than before it was compressed. As a result, the average force exerted on the walls is doubled. Hence, when the volume is halved the pressure of the gas is doubled, and pV is a constant. Boyle's law applies to all gases regardless of their chemical identity (provided the pressure is low) because at low pressures the average separation of molecules is so great that they exert no influence on one another and hence travel independently.

The molecular explanation of Charles's law lies in the fact that raising the temperature of a gas increases the average speed of its molecules. The molecules collide with the walls more frequently and with greater impact. Therefore they exert a greater pressure on the walls of the container. For a quantitative account of these relations, see Topic 1B.

#### 1A.2(b) The value of the gas constant

If the pressure, volume, amount, and temperature are expressed in their SI units the gas constant *R* has units N m K⁻¹ mol⁻¹ which, because 1 J = 1 N m, can be expressed in terms of J K⁻¹ mol⁻¹. The currently accepted value of *R* is  $8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$ . Other combinations of units for pressure and volume result in different values and units for the gas constant. Some commonly encountered combinations are given in Table 1A.2.

The perfect gas law is of the greatest importance in physical chemistry because it is used to derive a wide range of relations

#### Table 1A.2 The (molar) gas constant*

R	
8.31447	$J K^{-1} mol^{-1}$
$8.20574 \times 10^{^{-2}}$	$dm^3 atm K^{-1} mol^{-1}$
$8.31447\times 10^{-2}$	$dm^3 bar K^{-1} mol^{-1}$
8.31447	$\operatorname{Pam}^{3} \operatorname{K}^{-1} \operatorname{mol}^{-1}$
62.364	$dm^3 \operatorname{Torr} K^{-1} mol^{-1}$
1.987 21	$\operatorname{cal} \operatorname{K}^{-1} \operatorname{mol}^{-1}$

* The gas constant is now defined as  $R = N_A k$ , where  $N_A$  is Avogadro's constant and k is Boltzmann's constant.

found throughout thermodynamics. It is also of considerable practical utility for calculating the properties of a perfect gas under a variety of conditions. For instance, the molar volume,  $V_m = V/n$ , of a perfect gas under the conditions called **standard ambient temperature and pressure** (SATP), defined as 298.15 K and 1 bar, is calculated as 24.789 dm³ mol⁻¹. An earlier definition, **standard temperature and pressure** (STP), was 0 °C and 1 atm; at STP, the molar volume of a perfect gas under these conditions is 22.414 dm³ mol⁻¹.

#### 1A.2(c) Mixtures of gases

When dealing with gaseous mixtures, it is often necessary to know the contribution that each component makes to the total pressure of the sample. The **partial pressure**,  $p_p$ , of a gas J in a mixture (any gas, not just a perfect gas), is defined as

$$p_{\rm I} = x_{\rm I} p$$
 [definition] Partial pressure [definition] (1A.6)

where  $x_J$  is the **mole fraction** of the component J, the amount of J expressed as a fraction of the total amount of molecules, *n*, in the sample:

$$x_{\rm J} = \frac{n_{\rm J}}{n}$$
  $n = n_{\rm A} + n_{\rm B} + \cdots$  Mole fraction  
[definition] (1A.7)

When no J molecules are present,  $x_j = 0$ ; when only J molecules are present,  $x_j = 1$ . It follows from the definition of  $x_j$  that, whatever the composition of the mixture,  $x_A + x_B + \cdots = 1$  and therefore that the sum of the partial pressures is equal to the total pressure:

$$p_{\rm A} + p_{\rm B} + \dots = (x_{\rm A} + x_{\rm B} + \dots)p = p$$
 (1A.8)

This relation is true for both real and perfect gases.

When all the gases are perfect, the partial pressure as defined in eqn 1A.6 is also the pressure that each gas would exert if it occupied the same container alone at the same temperature. The latter is the original meaning of 'partial pressure'. That identification was the basis of the original formulation of **Dalton's law**:

The pressure exerted by a mixture of gases is the sum of the pressures that each one would exert if it occupied the container alone. This law is valid only for mixtures of perfect gases, so it is not used to define partial pressure. Partial pressure is defined by eqn 1A.6, which is valid for all gases.

#### Example 1A.3 Calculating partial pressures

The mass percentage composition of dry air at sea level is approximately  $N_2$ : 75.5;  $O_2$ : 23.2; Ar: 1.3. What is the partial pressure of each component when the total pressure is 1.20 atm?

*Collect your thoughts* Partial pressures are defined by eqn 1A.6. To use the equation, first calculate the mole fractions of the components by using eqn 1A.7 and the fact that the amount of atoms or molecules J of molar mass  $M_j$  in a sample of mass  $m_j$  is  $n_j = m_j/M_j$ . The mole fractions are independent of the total mass of the sample, so choose the latter to be exactly 100 g (which makes the conversion from mass percentages very straightforward). Thus, the mass of N₂ present is 75.5 per cent of 100 g, which is 75.5 g.

*The solution* The amounts of each type of atom or molecule present in 100 g of air, in which the masses of  $N_2$ ,  $O_2$ , and Ar are 75.5 g, 23.2 g, and 1.3 g, respectively, are

$$n(N_2) = \frac{75.5 \text{ g}}{28.02 \text{ g mol}^{-1}} = \frac{75.5}{28.02} \text{ mol} = 2.69 \text{ mol}$$
$$n(O_2) = \frac{23.2 \text{ g}}{32.00 \text{ g mol}^{-1}} = \frac{23.2}{32.00} \text{ mol} = 0.725 \text{ mol}$$
$$n(Ar) = \frac{1.3 \text{ g}}{39.95 \text{ g mol}^{-1}} = \frac{1.3}{39.95} \text{ mol} = 0.033 \text{ mol}$$

The total is 3.45 mol. The mole fractions are obtained by dividing each of the above amounts by 3.45 mol and the partial pressures are then obtained by multiplying the mole fraction by the total pressure (1.20 atm):

	$N_2$	O ₂	Ar
Mole fraction:	0.780	0.210	0.0096
Partial pressure/atm:	0.936	0.252	0.012

*Self-test 1A.3* When carbon dioxide is taken into account, the mass percentages are 75.52 ( $N_2$ ), 23.15 ( $O_2$ ), 1.28 (Ar), and 0.046 ( $CO_2$ ). What are the partial pressures when the total pressure is 0.900 atm?

mts72000.0 bns ,<br/>4800.0 ,<br/>e81.0 ,<br/>E07.0 :<br/>TswerA  $\rm M$ 

#### Exercises

E1A.3 Could 131 g of xenon gas in a vessel of volume  $1.0 \text{ dm}^3$  exert a pressure of 20 atm at 25 °C if it behaved as a perfect gas? If not, what pressure would it exert?

**E1A.4** A perfect gas undergoes isothermal compression, which reduces its volume by 2.20 dm³. The final pressure and volume of the gas are 5.04 bar and 4.65 dm³, respectively. Calculate the original pressure of the gas in (i) bar, (ii) atm.

**E1A.5** At 500 °C and 93.2 kPa, the mass density of sulfur vapour is  $3.710 \text{ kg m}^{-3}$ . What is the molecular formula of sulfur under these conditions?