


Useful relations

Selected units*

Conversion factors

Mathematical relations

Logarithms and exponentials

Series expansions

Derivatives; for Integrals, see the Resource
section

Greek alphabet*

At 298.15 K

RT 2.4790 kJ mol−1 RT/F 25.693 mV
(RT/F) ln 10 59.160 mV kT/hc 207.225 cm−1

kT 25.693 meV Vm 2.4790 × 10−2

m3 mol−1

24.790 dm3 mol−1

1 N 1 kg m s−2 1 J 1 kg m2 s−2

1 Pa 1 kg m−1 s−2 1 W 1 J s−1

1 V 1 J C−1 1 A 1 C s−1

1 T 1 kg s−2 A−1 1 P 10−1 kg m−1 s−1

1 S 1 Ω−1 = 1 A V−1

* For multiples (milli, mega, etc), see the Resource section

θ/°C = T/K − 273.15*

1 eV 1.602 177 × 10−19 J
96.485 kJ mol−1

8065.5 cm−1

1 cal 4.184* J

1 atm 101.325* kPa
760* Torr

1 cm−1 1.9864 × 10−23 J

1 D 3.335 64 × 10−30 C m 1 Å 10−10 m*
* Exact value

π = 3.141 592 653 59 …  e = 2.718 281 828 46 …

ln x + ln y + … = ln xy… ln x − ln y = ln(x/y)
a ln x = ln xa ln x = (ln 10) log x

= (2.302 585 …) log x
exeyez…. = ex+y+z+… ex/ey  =  ex−y

(ex)a = eax e±ix = cos x ± i sin x

x x xe 1 2! 3!
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Α, α alpha Ι, ι iota Ρ, ρ rho
Β, β beta Κ, κ kappa Σ, σ sigma
Γ, γ gamma Λ, λ lambda Τ, τ tau
Δ, δ delta Μ, μ mu ϒ, υ upsilon
Ε, ε epsilon Ν, ν nu Φ, ϕ phi

Ζ, ζ zeta Ξ, ξ xi Χ, χ chi
Η, η eta Ο, ο omicron Ψ, ψ psi
Θ, θ theta Π, π pi Ω, ω omega

* Oblique versions (α, β, …) are used to denote physical
observables.
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VIII
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VIIA

1 2 1 H
hydrogen

1.0079
helium

4.00

3 Li 4 Be
lithium

6.94
beryllium

9.01

5 B 6 C 7 N 8 O
boron carbon nitrogen oxygen

10.81 12.01 14.01 16.00

9 F 10 Ne
�uorine neon

19.00 20.18

11 Na 12Mg

19 K 20 Ca 21Sc

sodium magnesium

potassium calcium scandium

22.99 24.31

39.10 40.08 44.96

22 Ti 23 V 24 Cr 25 Mn
titanium vanadium chromium manganese

50.9447.87 52.00 54.94

26 Fe 27 Co 28 Ni 29 Cu
iron cobalt nickel copper

55.84 58.93 58.69 63.55

13 Al 14 Si 15 P 16 S
aluminium silicon phosphorus sulfur

17 Cl 18 Ar
chlorine argon

26.98 28.09 30.97 32.06 35.45 39.95

30 Zn 31Ga 32Ge 33 As 34 Se 35 Br 36 Kr
zinc gallium germa nium arsenic selenium bromine

65.41 69.72 72.64 74.92 78.96 79.90
krypton

83.80

37Rb 38 Sr

55 Cs

87 Fr

56 Ba

88 Ra

39 Y 40 Zr 41 Nb 42 Mo

72 Hf 73 Ta 74 W

104 Rf 105Db 106Sg

rubidium strontium yttrium zirconium niobium molybdenum

caesium barium hafnium tantalum tungsten

francium radium rutherfordium dubnium seaborgium

85.47 87.62 88.91 91.22 92.91 95.94

132.91 137.33 178.49 180.95 183.84

(223) (226) (261) (262) (263)

71 Lu

103 Lr

lutetium

lawrencium

174.97

(262)

43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd

75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg

107Bh 108Hs 109 Mt

technetium ruthenium rhodium palladium silver cadmium

rhenium osmium iridium platinum gold mercury

bohrium hassium meitnerium

(98) 101.07 102.90 106.42 107.87 112.41

186.21 190.23 192.22 195.08 196.97 200.59

(262) (265) (266)

49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe

81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn

indium tin antimony tellurium iodine xenon

thallium lead bismuth polonium astatine radon

204.38 207.2 208.98 (209) (210) (222)

114.82 118.71 121.76 127.60 126.90 131.29

58 Ce 59 Pr 60 Nd 61Pm 62 Sm 63 Eu 64 Gd

90 Th 91 Pa 92 U 93Np 94 Pu 95Am 96 Cm

65 Tb 66 Dy 67 Ho 68Er 69 Tm 70 Yb

97 Bk 98 Cf 99 Es 100Fm 101Md 102No

cerium praseodymium neodymium promethium samarium europium gadiolinium

thorium protactinium uranium neptunium plutonium americium

terbium dysprosium holmium

berkelium californium einsteinium

erbium thulium ytterbium

fermium mendelevium nobelium

140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.93

232.04 231.04 238.03 (237) (244) (243) (247) (247)

162.50 164.93 167.26 168.93 173.04
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(251) (252) (257) (258) (259)

57La
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138.91

(227)
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Period 1

Numerical values of molar
masses in grams per mole  (atomic
weights) are quoted to the number
of signi�cant �gures typical of
most naturally occurring samples. 

Ds
darmstadtium

(271)

roentgenium

(272)

2 He

1s1 1s2

2s22p62s22p52s22p42s22p32s22p22s22p1

3s23p63s23p53s23p43s23p33s23p23s23p1

4s24p64s24p54s24p44s24p34s24p24s24p1

5s25p65s25p55s25p45s25p35s25p25s25p1

6s26p66s26p56s26p46s26p36s26p2

7s27p2 7s27p4

6s26p1

2s22s1 

3s23s1 

4s24s1 
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4d15s2 4d25s2 4d45s1 4d55s1 4d55s2 4d75s1 4d85s1 4d10 4d105s1 4d105s2

5d16s2 5d26s2 5d36s2 5d46s2 5d56s2 5d66s2 5d76s2 5d96s1 5d106s1

6d17s2 6d27s2 6d37s2 6d47s2 6d57s2 6d67s2 6d77s2 6d87s2 6d97s2

5d106s2

4f15d16s2

5f26d17s2 5f36d17s2 5f46d17s2

4f75d16s2 5d16s24f36s2 4f46s2 4f56s2 4f66s2 4f76s2 4f96s2 4f106s2 4f116s2 4f126s2 4f136s2 4f146s2

6d27s2 5f76d17s2 6d17s25f67s2 5f77s2 5f97s2 5f107s2 5f117s2 5f127s2 5f137s2 5f147s2

112

6d107s2

Cn
copernicium

? ?
7s27p3

?
7s27p5

?
7s27p6

?
7s27p1

? ?
�erovium moscovium tennessine oganessonnihonium livermorium
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FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 634* 10−19 C

Planck’s constant h 6.626 070 15 10−34 J s

ħ = h/2π 1.054 571 817 10−34 J s

Boltzmann’s constant k 1.380 649* 10−23 J K−1

Avogadro’s constant NA 6.022 140 76 1023 mol−1

Gas constant R = NAk 8.314 462 J K−1 mol−1

Faraday’s constant F = NAe 9.648 533 21 104 C mol−1

Mass

 Electron me 9.109 383 70 10−31 kg

 Proton mp 1.672 621 924 10−27 kg

 Neutron mn 1.674 927 498 10−27 kg

 Atomic mass constant mu 1.660 539 067 10−27 kg

Magnetic constant
(vacuum permeability)

μ0 1.256 637 062 10−6 J s2 C−2 m−1

Electric constant
(vacuum permittivity)

� �0 0
21� / c 8.854 187 813 10−12 J−1 C2 m−1

4πε0 1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μB = eħ/2me 9.274 010 08 10−24 J T−1

Nuclear magneton μN = eħ/2mp 5.050 783 75 10−27 J T−1

Proton magnetic moment μp 1.410 606 797 10−26 J T−1

g-Value of electron ge 2.002 319 304

Magnetogyric ratio

 Electron γe = gee/2me 1.760 859 630 1011 T−1 s−1

 Proton γp = 2μp/ħ 2.675 221 674 108 T−1 s−1

Bohr radius a0 = 4πε0ħ
2/e2me 5.291 772 109 10−11 m

Rydberg constant R m e h c� � e /4 3
0
28 � 1.097 373 157 105 cm−1

hcR e

∞ / 13.605 693 12 eV

Fine-structure constant α = μ0e
2c/2h 7.297 352 5693 10−3

α−1 1.370 359 999 08 102

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 374 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2

Gravitational constant G 6.674 30 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

Our Physical Chemistry is continuously evolving in response 
to users’ comments, our own imagination, and technical in-
novation. The text is mature, but it has been given a new vi-
brancy: it has become dynamic by the creation of an e-book 
version with the pedagogical features that you would expect. 
They include the ability to summon up living graphs, get 
mathematical assistance in an awkward derivation, find solu-
tions to exercises, get feedback on a multiple-choice quiz, and 
have easy access to data and more detailed information about 
a variety of subjects. These innovations are not there simply 
because it is now possible to implement them: they are there to 
help students at every stage of their course.

The flexible, popular, and less daunting arrangement of the 
text into readily selectable and digestible Topics grouped to-
gether into conceptually related Focuses has been retained. 
There have been various modifications of emphasis to match the 
evolving subject and to clarify arguments either in the light of 
readers’ comments or as a result of discussion among ourselves. 
We learn as we revise, and pass on that learning to our readers.

Our own teaching experience ceaselessly reminds us that 
mathematics is the most fearsome part of physical chemis-
try, and we likewise ceaselessly wrestle with finding ways to 
overcome that fear. First, there is encouragement to use math-
ematics, for it is the language of much of physical chemistry. 
The How is that done? sections are designed to show that if 
you want to make progress with a concept, typically making 
it precise and quantitative, then you have to deploy mathemat-
ics. Mathematics opens doors to progress. Then there is the 
fine-grained help with the manipulation of equations, with 
their detailed annotations to indicate the steps being taken. 

Behind all that are The chemist’s toolkits, which provide brief 
reminders of the underlying mathematical techniques. There 
is more behind them, for the collections of Toolkits available 
via the e-book take their content further and provide illustra-
tions of how the material is used.

The text covers a very wide area and we have sought to add 
another dimension: depth. Material that we judge too detailed 
for the text itself but which provides this depth of treatment, 
or simply adds material of interest springing form the intro-
ductory material in the text, can now be found in enhanced 
A deeper look sections available via the e-book. These sections 
are there for students and instructors who wish to extend their 
knowledge and see the details of more advanced calculations.

The main text retains Examples (where we guide the reader 
through the process of answering a question) and Brief illus-
trations (which simply indicate the result of using an equation, 
giving a sense of how it and its units are used). In this edition a 
few Exercises are provided at the end of each major section in a 
Topic along with, in the e-book, a selection of multiple-choice 
questions. These questions give the student the opportunity to 
check their understanding, and, in the case of the e-book, re-
ceive immediate feedback on their answers. Straightforward 
Exercises and more demanding Problems appear at the end of 
each Focus, as in previous editions.

The text is living and evolving. As such, it depends very 
much on input from users throughout the world. We welcome 
your advice and comments.

PWA
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viii 12 The properties of gases

USING THE BOOK

TO THE STUDENT

The twelfth edition of Atkins’ Physical Chemistry has been 
developed in collaboration with current students of physical 
chemistry in order to meet your needs better than ever before. 
Our student reviewers have helped us to revise our writing 
style to retain clarity but match the way you read. We have also 
introduced a new opening section, Energy: A first look, which 
summarizes some key concepts that are used throughout the 
text and are best kept in mind right from the beginning. They 
are all revisited in greater detail later. The new edition also 
brings with it a hugely expanded range of digital resources, 
including living graphs, where you can explore the conse-
quences of changing parameters, video interviews with prac-
tising scientists, video tutorials that help to bring key equations 
to life in each Focus, and a suite of self-check questions. These 
features are provided as part of an enhanced e-book, which is 
accessible by using the access code included in the book.

You will find that the e-book offers a rich, dynamic learn-
ing experience. The digital enhancements have been crafted to 
help your study and assess how well you have understood the 
material. For instance, it provides assessment materials that 
give you regular opportunities to test your understanding.

Innovative structure
Short, selectable Topics are grouped into overarching Focus 
sections. The former make the subject accessible; the latter 
provides its intellectual integrity. Each Topic opens with 
the questions that are commonly asked: why is this material 
important?, what should you look out for as a key idea?, and 
what do you need to know already?

Resource section
The Resource section at the end of the book includes a brief 
review of two mathematical tools that are used throughout the 
text: differentiation and integration, including a table of the 
integrals that are encountered in the text. There is a review of 
units, and how to use them, an extensive compilation of tables 
of physical and chemical data, and a set of character tables. 
Short extracts of most of these tables appear in the Topics 
themselves: they are there to give you an idea of the typical 
values of the physical quantities mentioned in the text.

➤  Why do you need to know this material?
The First Law of thermodynamics is the foundation of the 
discussion of the role of energy in chemistry. Wherever the 
generation or use of energy in physical transformations or 
chemical reactions is of interest, lying in the background 
are the concepts introduced by the First Law.

➤  What is the key idea?
The total energy of an isolated system is constant.

➤  What do you need to know already?
This Topic makes use of the discussion of the properties of 
gases (Topic 1A), particularly the perfect gas law. It builds 
on the definition of work given in Energy: A first look.

 A closed system has a boundary through which matter 
cannot be transferred.

Both open and closed systems can exchange energy with their 
surroundings.

 An isolated system can exchange neither energy nor 
matter with its surroundings.

2A.1 Work, heat, and energy

Although thermodynamics deals with the properties of bulk 
systems, it is enriched by understanding the molecular origins 
of these properties. What follows are descriptions of work, heat, 
and energy from both points of view.

2A.1(a) Definitions
The fundamental physical property in thermodynamics is 
work: work is done in order to achieve motion against an op-
posing force (Energy: A first look 2a). A simple example is the 
process of raising a weight against the pull of gravity. A process 
does work if in principle it can be harnessed to raise a weight 
somewhere in the surroundings. An example is the expansion 
of a gas that pushes out a piston: the motion of the piston can in 
principle be used to raise a weight. Another example is a chemi-
cal reaction in a battery: the reaction generates an electric cur-
rent that can drive a motor and be used to raise a weight.

The energy of a system is its capacity to do work (Energy: A 
first look 2b). When work is done on an otherwise isolated sys-
tem (for instance, by compressing a gas with a piston or wind-
ing a spring), the capacity of the system to do work is increased. 
That is, the energy of the system is increased. When the system 
does work (when the piston moves out or the spring unwinds), 
it can do less work than before. That is, its energy is decreased. 
When a gas is compressed by a piston, work is done on the sys-
tem and its energy is increased. When that gas is allowed to ex-
pand again the piston moves out, work is done by the system, 
and the energy of the system is decreased.

It is very important to note that when the energy of the sys-
tem increases that of the surroundings decreases by exactly the 
same amount, and vice versa. Thus, the weight raised when the 
system does work has more energy than before the expansion, 
because a raised weight can do more work than a lowered one. 
The weight lowered when work is done on the system has less 

In thermodynamics, the universe is divided into two parts: 
the system and its surroundings. The system is the part of the 
world of interest. It may be a reaction vessel, an engine, an elec-
trochemical cell, a biological cell, and so on. The  surroundings 
comprise the region outside the system. Measurements are 
made in the surroundings. The type of system depends on the 
characteristics of the boundary that divides it from the sur-
roundings (Fig. 2A.1):

 An open system has a boundary through which matter 
can be transferred.

TOPIC 2A Internal energy

Figure 2A.1 (a) An open system can exchange matter and energy 
with its surroundings. (b) A closed system can exchange energy 
with its surroundings, but it cannot exchange matter. (c) An 
isolated system can exchange neither energy nor matter with its 
surroundings.

Open Closed Isolated

(a) (b) (c)
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AVAILABLE IN THE E-BOOK

‘Impact on…’ sections

‘Impact on’ sections show how physical chemistry is applied in 
a variety of modern contexts. They showcase physical chemis-
try as an evolving subject.

Go to this location in the accompanying e-book to view a 
list of Impacts.

‘A deeper look’ sections

These sections take some of the material in the text further and 
are there if you want to extend your knowledge and see the de-
tails of some of the more advanced derivations.

Go to this location in the accompanying e-book to view a 
list of Deeper Looks.

Group theory tables

A link to comprehensive group theory tables can be found at 
the end of the accompanying e-book.

The chemist’s toolkits

The chemist’s toolkits are reminders of the key mathematical, 
physical, and chemical concepts that you need to understand in 
order to follow the text.

For a consolidated and enhanced collection of the toolkits 
found throughout the text, go to this location in the accompa-
nying e-book.

RESOURCE SEC TION

Contents

PART 1  Mathematical resources 878
1.1 Integration 878

1.2 Differentiation 878

1.3 Series expansions 881

PART 2 Quantities and units 882

PART 3 Data 884

PART 4 Character tables 910



Using the book ix

Checklist of concepts
A checklist of key concepts is provided at the end of each 
Topic, so that you can tick off the ones you have mastered.

Physical chemistry: people and perspectives
Leading figures in a varity of fields share their unique and var-
ied experiences and careers, and talk about the challenges they 
faced and their achievements to give you a sense of where the 
study of physical chemistry can lead.

PRESENTING THE MATHEMATICS

How is that done?
You need to understand how an equation is derived from 
reasonable assumptions and the details of the steps involved. 
This is one role for the How is that done? sections. Each one 
leads from an issue that arises in the text, develops the nec-
essary equations, and arrives at a conclusion. These sections 
maintain the separation of the equation and its derivation so 
that you can find them easily for review, but at the same time 
emphasize that mathematics is an essential feature of physical 
chemistry.

The chemist’s toolkits
The chemist’s toolkits are reminders of the key mathematical, 
physical, and chemical concepts that you need to understand 
in order to follow the text. Many of these Toolkits are rele-
vant to more than one Topic, and you can view a compilation 
of them, with enhancements in the form of more informa-
tion and brief illustrations, in this section of the accompany-
ing e-book.

Annotated equations and equation labels
We have annotated many equations to help you follow how they 
are developed. An annotation can help you travel across the 
equals sign: it is a reminder of the substitution used, an approxi-
mation made, the terms that have been assumed constant, an 
integral used, and so on. An annotation can also be a reminder 
of the significance of an individual term in an expression. We 
sometimes collect into a small box a collection of numbers or 
symbols to show how they carry from one line to the next. Many 
of the equations are labelled to highlight their significance.

2A Internal energy 43

 calculations heat capacities can be treated as almost inde-
pendent of  temperature.

The heat capacity is used to relate a change in internal energy 
to a change in temperature of a constant-volume system. It fol-
lows from eqn 2A.14 that

 d d     
 U C TV= Internal energy change on heating

[constant volume]  (2A.15a)

That is, at constant volume, an infinitesimal change in temper-
ature brings about an infinitesimal change in internal energy, 
and the constant of proportionality is CV. If the heat capacity is 
independent of temperature over the range of temperatures of 
interest, then

 �
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A measurable change of temperature, ∆T , brings about a meas-
urable change in internal energy, ∆U , with

 � �U C TV� Internal energy change on heating
[constant volume]

    
  (2A.15b)

Because a change in internal energy can be identified with the 
heat supplied at constant volume (eqn 2A.11b), the last equa-
tion can also be written as

 q C TV V� �  (2A.16)

This relation provides a simple way of measuring the heat ca-
pacity of a sample. A measured quantity of energy is  transferred 

Brief illustration 2A.7

Suppose a 55 W electric heater immersed in a gas in a constant-
volume adiabatic container was on for 120 s and it was found 
that the temperature of the gas rose by 5.0 °C (an increase equiv-
alent to 5.0 K). The heat supplied is (55 W) × (120 s) = 6.6 kJ 
(with 1 J = 1 W s), so the heat capacity of the sample is

 
CV � � �6 6

50
1 3 1.

.
kJ
K

kJK

as heat to the sample (by electrical heating, for example) under 
constant volume conditions and the resulting increase in tem-
perature is monitored. The ratio of the energy transferred as 
heat to the temperature rise it causes (q TV /∆ ) is the constant-
volume heat capacity of the sample. A large heat capacity im-
plies that, for a given quantity of energy transferred as heat, 
there will be only a small increase in temperature.

Checklist of concepts

☐ 1. Work is the process of achieving motion against an 
opposing force.

☐ 2. Energy is the capacity to do work.
☐ 3. Heat is the process of transferring energy as a result of 

a temperature difference.
☐ 4. An exothermic process is a process that releases energy 

as heat.
☐ 5. An endothermic process is a process in which energy is 

acquired as heat.
☐ 6. In molecular terms, work is the transfer of energy that 

makes use of organized motion of atoms in the sur-
roundings and heat is the transfer of energy that makes 
use of their disorderly motion.

☐ 7. Internal energy, the total energy of a system, is a state 
function.

☐ 8. The internal energy increases as the temperature is 
raised.

☐ 9. The First Law states that the internal energy of an iso-
lated system is constant.

☐ 10. Free expansion (expansion against zero pressure) does 
no work.

☐ 11. A reversible change is a change that can be reversed by 
an infinitesimal change in a variable.

☐ 12. To achieve reversible expansion, the external pres-
sure is matched at every stage to the pressure of the 
system.

☐ 13. The energy transferred as heat at constant volume is 
equal to the change in internal energy of the system.

☐ 14. Calorimetry is the measurement of heat transactions.

Exercises
E2A.3 A sample consisting of 2.00 mol He is expanded isothermally at 0 °C 
from 5.0 dm3 to 20.0 dm3 (i) reversibly, (ii) against a constant external  
pressure equal to the final pressure of the gas, and (iii) freely (against zero 
external pressure). For the three processes calculate q, w, and ΔU.

E2A.4 A sample consisting of 1.00 mol of perfect gas atoms, for which 
C RV,m = 3

2 , initially at p1 = 1.00 atm and T1 = 300 K, is heated to 400 K at 
constant volume. Calculate the final pressure, ΔU, q, and w.

2B.1 The definition of enthalpy

The enthalpy, H, is defined as

 H U pV� � Enthalpy
[definition] (2B.1)

where p is the pressure of the system and V is its volume. 
Because U, p, and V are all state functions, the enthalpy is a 
state function too. As is true of any state function, the change 
in enthalpy, ΔH, between any pair of initial and final states is 
independent of the path between them.

2B.1(a) Enthalpy change and heat transfer
An important consequence of the definition of enthalpy in 
eqn 2B.1 is that it can be shown that the change in enthalpy is 
equal to the energy supplied as heat under conditions of con-
stant pressure.

The change in internal energy is not equal to the energy trans-
ferred as heat when the system is free to change its volume, 
such as when it is able to expand or contract under conditions 
of constant pressure. Under these circumstances some of the 
energy supplied as heat to the system is returned to the sur-
roundings as expansion work (Fig. 2B.1), so dU is less than dq. 
In this case the energy supplied as heat at constant pressure is 
equal to the change in another thermodynamic property of the 
system, the ‘enthalpy’.

➤  Why do you need to know this material?
The concept of enthalpy is central to many thermodynamic 
discussions about processes, such as physical transforma-
tions and chemical reactions taking place under conditions 
of constant pressure.

➤  What is the key idea?
A change in enthalpy is equal to the energy transferred as 
heat at constant pressure.

➤  What do you need to know already?
This Topic makes use of the discussion of internal energy 
(Topic 2A) and draws on some aspects of perfect gases 
(Topic 1A).

TOPIC 2B Enthalpy

Figure 2B.1 When a system is subjected to constant pressure and 
is free to change its volume, some of the energy supplied as heat 
may escape back into the surroundings as work. In such a case, 
the change in internal energy is smaller than the energy supplied 
as heat.

Energy
as heat

Energy as
work

ΔU < q

How is that done? 2B.1 Deriving the relation between 
enthalpy change and heat transfer at constant pressure

In a typical thermodynamic derivation, as here, a common way 
to proceed is to introduce successive definitions of the quanti-
ties of interest and then apply the appropriate constraints.

Step 1 Write an expression for H + dH in terms of the definition 
of H
For a general infinitesimal change in the state of the system, 
U changes to U + dU, p changes to p + dp, and V changes to  
V + dV, so from the definition in eqn 2B.1, H changes by dH to

H + dH = H + dU + pdV + Vdp

H + dH = (U + dU) + (p + dp)(V + dV)

 = U + dU+ pV + pdV + Vdp + dpdV

The last term is the product of two infinitesimally small quan-
tities and can be neglected. Now recognize that U + pV = H on 
the right (boxed), so

and hence

 d d d dH U p V V p� � �

Step 2 Introduce the definition of dU
Because dU = dq + dw this expression becomes

 d d d d d
d

H q w p V V p
U

� � � �
��� ��
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Because |ψ|2dx is a (dimensionless) probability, |ψ|2 is the 
probability density, with the dimensions of 1/length (for a 
one-dimensional system). The wavefunction ψ itself is called 
the probability amplitude. For a particle free to move in three 
dimensions (for example, an electron near a nucleus in an 
atom), the wavefunction depends on the coordinates x, y, and 
z and is denoted ψ(r). In this case the Born interpretation is 
(Fig. 7B.2):

If the wavefunction of a particle has the value ψ(r) 
at r, then the probability of finding the particle in an 
infinitesimal volume dτ = dxdydz at that position is 
proportional to |ψ(r)|2dτ.

In this case, |ψ|2 has the dimensions of 1/length3 and the 
wavefunction itself has dimensions of 1/length3/2 (and units 
such as m−3/2).

The Born interpretation does away with any worry about the 
significance of a negative (and, in general, complex) value of ψ 
because |ψ|2 is always real and nowhere negative. There is no 
direct significance in the negative (or complex) value of a wave-
function: only the square modulus is directly physically signifi-
cant, and both negative and positive regions of a wavefunction 
may correspond to a high probability of finding a particle in a 
region (Fig. 7B.3). However, the presence of positive and nega-
tive regions of a wavefunction is of great indirect significance, 
because it gives rise to the possibility of constructive and de-
structive interference between different wavefunctions.

A wavefunction may be zero at one or more points, and at 
these locations the probability density is also zero. It is impor-
tant to distinguish a point at which the wavefunction is zero 
(for instance, far from the nucleus of a hydrogen atom) from 
the point at which it passes through zero. The latter is called 
a node. A location where the wavefunction approaches zero 
without actually passing through zero is not a node. Thus, 
the wavefunction sin(2πx/λ) has nodes where the wave passes 
through zero, but the wavefunction e−kx has no nodes, despite 
becoming zero as x → ∞.

Figure 7B.1 The wavefunction ψ is a probability amplitude in 
the sense that its square modulus (ψ⋆ψ or |ψ|2) is a probability 
density. The probability of finding a particle in the region 
between x and x + dx is proportional to |ψ|2dx. Here, the 
probability density is represented by the density of shading in 
the superimposed band.

dx

|ψ|2

Probability = |ψ|2dx

x x + dx

Figure 7B.2 The Born interpretation of the wavefunction in three-
dimensional space implies that the probability of finding the 
particle in the volume element dτ = dxdydz at some position r is 
proportional to the product of dτ and the value of |ψ(r)|2 at that 
position.

dxdy

dz

z

x y

r

The chemist’s toolkit 7B.1 Complex numbers

A complex number z has the form z = x + iy, where i � �1. 
The complex conjugate of a complex number z is z* = x − iy. 
Complex numbers combine together according to the follow-
ing rules:

Addition and subtraction:

( ) ( ) ( ) ( )a b c d a c b d� � � � � � �i i i

Multiplication:

( ) ( ) ( ) ( )a b c d ac bd bc ad� � � � � �i  i i

Two special relations are:

Modulus: | | ( ) ( )z z z x y� � � 1 2 2 2 1 2/ /

Euler’s relation: e ii� � �� �cos sin , which implies that ei� � �1, 
cos ( )� � �� � �1

2 e ei i , and sin ( )� � �� � � �1
2 i e ei i .

Figure 7B.3 The sign of a wavefunction has no direct 
physical significance: the positive and negative regions of 
this wavefunction both correspond to the same probability 
distribution (as given by the square modulus of ψ and depicted by 
the density of the shading).

Wavefunction Probability density13A The Boltzmann distribution 545

If, as a result of collisions, the system were to fluctuate 
 between the configurations {N,0,0,…} and {N − 2,2,0,…}, it 
would almost always be found in the second, more likely con-
figuration, especially if N were large. In other words, a system 
free to switch between the two configurations would show 
properties characteristic almost exclusively of the second 
 configuration.

The next step is to develop an expression for the number of 
ways that a general configuration {N0,N1,…} can be achieved. 
This number is called the weight of the configuration and 
 denoted W .

How is that done? 13A.1 Evaluating the weight of a 
configuration

Consider the number of ways of distributing N balls into bins 
labelled 0, 1, 2 … such that there are N0 balls in bin 0, N1 in bin 
1, and so on. The first ball can be selected in N different ways, 
the next ball in N − 1 different ways from the balls remaining, 
and so on. Therefore, there are N(N − 1) … 1 = N! ways of 
selecting the balls.

There are N0! different ways in which the balls could have 
been chosen to fill bin 0 (Fig. 13A.1). Similarly, there are N1! 
ways in which the balls in bin 1 could have been chosen, and 
so on. Therefore, the total number of distinguishable ways of 
distributing the balls so that there are N0 in bin 0, N1 in bin 1, 
etc. regardless of the order in which the balls were chosen is

(13A.1)= N
N N N

!
! ! !0 1 2

W
Weight of a configuration

Figure 13A.1 Eighteen molecules (the vertical bars) shown here 
are distributed into four bins (distinguished by the three vertical 
lines) such that there are 3 molecules in the first, 6 in the second, 
and so on. There are 18! ways of selecting the balls to achieve 
this distribution. However, there are 3! equivalent ways of putting 
three molecules in the first receptacle, and likewise 6! equivalent 
ways of putting six molecules into the second receptacle, and so 
on. Hence the number of distinguishable ways of achieving this 
distribution is 18!/3!6!5!4!, or about 515 million.

3! 6! 5! 4!

N = 18

Brief illustration 13A.1

For the configuration {1,0,3,5,10,1}, which has N = 20, the 
weight is calculated as (recall that 0! ≡ 1)

W � � �
20

1 0 3 5 10 1
9 31 108!

! ! ! ! ! !
.

It will turn out to be more convenient to deal with the natu-
ral logarithm of the weight, ln W , rather than with the weight 
itself:

N
N N Nln ln !

! ! ! ln ! l
0 1 2

W = = −

=

ln (x/y) = ln x − ln y

ln xy = ln x + ln y

(N N N Nn ! ! !0 1 2 )

N N N N N Nln ! ln ! ln ! ln ! ln ! ln !i
i

0 1 2− − − − = − ∑

One reason for introducing lnW  is that it is easier to make ap-
proximations. In particular, the factorials can be simplified by 
using Stirling’s approximation1

 ln ! lnx x x x� � Stirling’s approximation [ >> 1]  x  (13A.2)

Then the approximate expression for the weight is

 

ln ( ln ) ( ln )

ln ln [

W � � � �

� � � �

�
�

N N N N N N

N N N N N N
i

i i i

i
i i

i

    because ��
�

�

� �

N N

N N N N

i

i
i i

]

ln ln (13A.3)

13A.1(b) The most probable distribution
The configuration {N − 2,2,0,…} has much greater weight than 
{N,0,0,…}, and it should be easy to believe that there may be 
other configurations that have a much greater weight than both. 
In fact for large N there is a configuration for which the weight 
is overwhelmingly larger than that of any other configuration. 
The system will almost always be found in this dominating con-
figuration because its weight is so much larger than other pos-
sible configurations. The properties of the system will therefore 
be characteristic of the dominating configuration.

This dominating configuration can be found by looking for 
the values of Ni that lead to a maximum value of W . Because 
W  is a function of all the Ni, this search is done by varying the 
Ni and looking for the values that correspond to dW = 0 just as 
in the search for the maximum of any function. In practice it 

1 A more precise form of this approximation is ln ! ln( ) /x � �2 1 2�
x x x�� � �1

2 ln .



x Using the book

Checklists of equations
A handy checklist at the end of each topic summarizes the 
most important equations and the conditions under which 
they apply. Don’t think, however, that you have to memorize 
every equation in these checklists: they are collected there for 
ready reference.

Video tutorials on key equations
Video tutorials to accompany each Focus dig deeper into some 
of the key equations used throughout that Focus, emphasizing 
the significance of an equation, and highlighting connections 
with material elsewhere in the book.

Living graphs
The educational value of many graphs can be heightened by 
seeing—in a very direct way—how relevant parameters, such 
as temperature or pressure, affect the plot. You can now in-
teract with key graphs throughout the text in order to ex-
plore how they respond as the parameters are changed. These 
graphs are clearly flagged throughout the book, and you can 
find links to the dynamic versions in the corresponding loca-
tion in the e-book.
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2B.2(b) The relation between heat capacities
Most systems expand when heated at constant pressure. Such 
systems do work on the surroundings and therefore some of 
the energy supplied to them as heat escapes back to the sur-
roundings as work. As a result, the temperature of the system 
rises less than when the heating occurs at constant volume. A 
smaller increase in temperature implies a larger heat capac-
ity, so in most cases the heat capacity at constant pressure of 
a system is larger than its heat capacity at constant volume. As 
shown in Topic 2D, there is a simple relation between the two 
heat capacities of a perfect gas:

 C C nRp V� � Relation between heat capacities
[perfect gas]

   
  (2B.10)

It follows that the molar heat capacity of a perfect gas is 
about 8 J K−1 mol−1 larger at constant pressure than at  constant 

 volume. Because the molar constant-volume heat capacity of 
a monatomic gas is about 3

2
1 112R � � �JK mol  (Topic 2A), the 

difference is highly significant and must be taken into ac-
count. The two heat capacities are typically very similar for 
condensed phases, and for them the difference can normally 
be ignored.

Exercises
E2B.3 The constant-pressure heat capacity of a sample of a perfect gas  
was found to vary with temperature according to the expression Cp/(J K−1) =  
20.17 + 0.3665(T/K). Calculate q and ΔH when the temperature is raised from 
25 °C to 100 °C at constant pressure.

E2B.4 When 3.0 mol O2 is heated at a constant pressure of 3.25 atm, its 
temperature increases from 260 K to 285 K. Given that the molar heat capacity 
of O2 at constant pressure is 29.4 J K−1 mol−1, calculate q, ΔH, and ΔU. You may 
assume that O2 behaves as a perfect gas.

Property Equation Comment Equation number

Enthalpy H = U + pV Definition 2B.1

Heat transfer at constant pressure dH = dqp, ΔH = qp No additional work 2B.2

Relation between ΔH and ΔU ΔH = ΔU + ΔngRT Isothermal process, perfect gas 2B.4

Heat capacity at constant pressure Cp = (∂H/∂T)p Definition 2B.5

Relation between heat capacities Cp − CV = nR Perfect gas 2B.10

Checklist of concepts

☐ 1. Energy transferred as heat at constant pressure is equal 
to the change in enthalpy of a system.

☐ 2. Enthalpy changes can be measured in an isobaric 
 calorimeter.

☐ 3. The heat capacity at constant pressure (the isobaric 
heat capacity) is equal to the slope of enthalpy with 
temperature.

Checklist of equations
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mass densities of the polymorphs are 2.71 g cm−3 (calcite) and 
2.93 g cm−3 (aragonite).

Collect your thoughts The starting point for the calculation 
is the relation between the enthalpy of a substance and its 
internal energy (eqn 2B.1). You need to express the difference 
between the two quantities in terms of the pressure and the 
difference of their molar volumes. The latter can be calculated 
from their molar masses, M, and their mass densities, ρ, by 
using ρ = M/Vm.

The solution The change in enthalpy when the transition 
occurs is

 

�H H H
U pV U pV

m m m

m m m m

aragonite calcite
a a c c

� �
� � � �

( ) ( )
{ ( ) ( )} { ( ) ( )}}

{ ( ) ( )}� � ��U p V Vm m ma c

where a denotes aragonite and c calcite. It follows by substitut-
ing Vm = M/ρ that

 
� �H U pMm m a c

� � �
�

�
�

�

�
�

1 1
� �( ) ( )  

Substitution of the data, using M = 100.09 g mol−1, gives

 

� �H Um m Pa g mo

g cm g cm

� � � �

� �
�

�

�

� �

( . ) ( . )

. .

1 0 10 100 09 1

1
2 93

1
2 71

5 1

3 3���
�

�
��

� � � � �� �2 8 10 0 285 3 1 3 1. .Pa cm mol Pa m mol

Hence (because 1 Pa m3 = 1 J), ΔHm − ΔUm = −0.28 J mol−1, which 
is only 0.1 per cent of the value of ΔUm.

Self-test 2B.1 Calculate the difference between ΔH and ΔU 
when 1.0 mol Sn(s, grey) of density 5.75 g cm−3 changes to  
Sn(s, white) of density 7.31 g cm−3 at 10.0 bar.

Answer: ΔH – ΔU = −4.4 J

In contrast to processes involving condensed phases, the val-
ues of the changes in internal energy and enthalpy might dif-
fer significantly for processes involving gases. The enthalpy of a 
perfect gas is related to its internal energy by using pV = nRT in 
the definition of H:

 H U pV U nRT
nRT

� � � �


 (2B.3)

This relation implies that the change of enthalpy in a reaction 
that produces or consumes gas under isothermal conditions is

 � � �H U n RT� � g
    

 
Relation between and
[isothermal process,

� �H U 
   perfect gas] (2B.4)

where Δng is the change in the amount of gas molecules in the 
reaction.

Brief illustration 2B.2

In the reaction 3 H2(g) + N2(g) → 2 NH3(g), 4 mol of gas-
phase molecules is replaced by 2 mol of gas-phase molecules, 
so Δng = −2 mol. Therefore, at 298 K, when RT = 2.5 kJ mol−1, 
the molar enthalpy and molar internal energy changes taking 
place in the system are related by

 � �H U RTm m kJmo� � � � � � �( ) .2 5 0 1 1

Note that the difference is expressed in kilojoules, not joules 
as in Example 2B.1. The enthalpy change is more negative than 
the change in internal energy because, although energy escapes 
from the system as heat when the reaction occurs, the system 
contracts as the product is formed, so energy is restored to it as 
work from the surroundings.

Exercises
E2B.1 Calculate the value of ΔHm − ΔUm for the reaction N2(g) + 3 H2(g) →  
2 NH3(g) at 473 K.

E2B.2 When 0.100 mol of H2(g) is burnt in a flame calorimeter it is 
observed that the water bath in which the apparatus is immersed increases 
in temperature by 13.64 K. When 0.100 mol C4H10(g), butane, is burnt in 
the same apparatus the temperature rise is 6.03 K. The molar enthalpy of 
combustion of H2(g) is −285 kJ mol−1. Calculate the molar enthalpy  
of combustion of butane.

2B.2 The variation of enthalpy with 
temperature

The enthalpy of a substance increases as its temperature is 
raised. The reason is the same as for the internal energy: mol-
ecules are excited to states of higher energy so their total en-
ergy increases. The relation between the increase in enthalpy 
and the increase in temperature depends on the conditions (e.g. 
whether the pressure or the volume is constant).

2B.2(a) Heat capacity at constant pressure
The most frequently encountered condition in chemistry is 
constant pressure. The slope of the tangent to a plot of enthalpy 
against temperature at constant pressure is called the heat 
 capacity at constant pressure (or isobaric heat capacity), Cp, at a 
given temperature (Fig. 2B.3). More formally, using the partial 
derivative notation introduced in The chemists’ toolkit 2A.1 in 
Topic 2A:

 C H
Tp

p

�
�
�

�
�
�

�
�
�

Heat capacity at constant pressure
[definitio

    
nn]  (2B.5)

The heat capacity at constant pressure is the analogue of the 
heat capacity at constant volume (Topic 2A) and is an extensive 
property. The molar heat capacity at constant pressure, Cp,m,  

Atkins-Chap02_033-074.indd   47 9/30/2022   1:04:25 PM

48 2 The First Law

is the heat capacity per mole of substance; it is an intensive 
property.

The heat capacity at constant pressure relates the change in 
enthalpy to a change in temperature. For infinitesimal changes 
of temperature, eqn 2B.5 implies that

 d d  (at constant pressureH C Tp= )  (2B.6a)

If the heat capacity is constant over the range of temperatures of 
interest, then for a measurable increase in temperature

 �
�

H C T C T C T TpT

T

p T

T

p

T

� � � �� �d d
1

2

1

2

2 1( )
��� ��

which can be summarized as

 � �H C Tp�  at constant pressure( ) (2B.6b)

Because a change in enthalpy can be equated to the energy 
supplied as heat at constant pressure, the practical form of this 
equation is

 q C Tp p� �  (2B.7)

This expression shows how to measure the constant-pressure 
heat capacity of a sample: a measured quantity of energy is 
supplied as heat under conditions of constant pressure (as in a 
sample exposed to the atmosphere and free to expand), and the 
temperature rise is monitored.

The variation of heat capacity with temperature can some-
times be ignored if the temperature range is small; this is an 
excellent approximation for a monatomic perfect gas (for 
instance, one of the noble gases at low pressure). However, 
when it is necessary to take the variation into account  
for other substances, a convenient approximate empirical 
 expression is

 C a bT c
Tp � � � 2  (2B.8)

Figure 2B.3 The constant-pressure heat capacity at a particular 
temperature is the slope of the tangent to a curve of the enthalpy 
of a system plotted against temperature (at constant pressure). 
For gases, at a given temperature the slope of enthalpy versus 
temperature is steeper than that of internal energy versus 
temperature, and Cp,m is larger than CV,m.

Temperature, T

E
n

th
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p
y,

 H

A

B

Internal
energy, U

Table 2B.1 Temperature variation of molar heat capacities, 
C (JK mol ) = +  + 1 1 2

p a bT c T,m / /− − *

a b/(10−3 K−1) c/(105 K2)

C(s, graphite) 16.86 4.77 −8.54

CO2(g) 44.22 8.79 −8.62

H2O(l) 75.29 0 0

N2(g) 28.58 3.77 −0.50

* More values are given in the Resource section.

The empirical parameters a, b, and c are independent of tempera-
ture. Their values are found by fitting this expression to experi-
mental data on many substances, as shown in Table 2B.1.

If eqn 2B.8 is used to calculate the change in enthalpy be-
tween two temperatures T1 and T2, integration by using Integral 
A.1 in the Resource section gives

 

�H C T a bT c
T

T

aT bT c
T
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pT
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T
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 (2B.9)

Example 2B.2 Evaluating an increase in enthalpy with 
temperature

What is the change in molar enthalpy of N2 when it is heated 
from 25 °C to 100 °C? Use the heat capacity information in 
Table 2B.1.

Collect your thoughts The heat capacity of N2 changes with 
temperature significantly in this range, so use eqn 2B.9.

The solution Using a = 28.58 J K−1 mol−1, b = 3.77 × 10−3 J K−2 mol−1, 
and c = −0.50 × 105 J K mol−1, T1 = 298 K, and T2 = 373 K, eqn 2B.9 
is written as

 

�H H H� �

� � �

�

� �
m mK K  

JK mol K K
( ) ( )

( . ) ( )
( .

373 298
28 58 373 298

3 77

1 1

1
2 �� � �

� � � �

� � �

�

10 373 298

0 50 10 1
373

3 2 1 2 2

5 1

JK mol K K

JKmol

) {( ) ( ) }

( . )
KK K
�

�

�
��

�

�
��

1
298

The final result is

 H Hm mK K kJmo( ) ( ) .373 298 2 20 1 1� � �

Self-test 2B.2 At very low temperatures the heat capacity of a 
nonmetallic solid is proportional to T 3, and C aTp,m = 3. What 
is the change in enthalpy of such a substance when it is heated 
from 0 to a temperature T (with T close to 0)?

Answer: �HaT m�1
4

4
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SET TING UP AND SOLVING PROBLEMS

Brief illustrations
A Brief illustration shows you how to use an equation or con-
cept that has just been introduced in the text. It shows you how 
to use data and manipulate units correctly. It also helps you to 
become familiar with the magnitudes of quantities.

Examples
Worked Examples are more detailed illustrations of the appli-
cation of the material, and typically require you to assemble 
and deploy several relevant concepts and equations.

Everyone has a different way to approach solving a problem, 
and it changes with experience. To help in this process, we 
suggest how you should collect your thoughts and then pro-
ceed to a solution. All the worked Examples are accompanied 
by closely related self-tests to enable you to test your grasp of 
the material after working through our solution as set out in 
the Example.



Using the book xi

FOCUS 1 The properties of gases

To test your understanding of this material, work through 
the Exercises, Additional exercises, Discussion questions, and 
Problems found throughout this Focus.

Selected solutions can be found at the end of this Focus in 
the e-book. Solutions to even-numbered questions are available 
online only to lecturers.

TOPIC 1A The perfect gas

Discussion questions
D1A.1 Explain how the perfect gas equation of state arises by combination of 
Boyle’s law, Charles’s law, and Avogadro’s principle.

D1A.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a 
limiting law.

Additional exercises
E1A.8 Express (i) 22.5 kPa in atmospheres and (ii) 770 Torr in pascals.

E1A.9 Could 25 g of argon gas in a vessel of volume 1.5 dm3 exert a pressure  
of 2.0 bar at 30 °C if it behaved as a perfect gas? If not, what pressure would  
it exert?

E1A.10 A perfect gas undergoes isothermal expansion, which increases its 
volume by 2.20 dm3. The final pressure and volume of the gas are 5.04 bar  
and 4.65 dm3, respectively. Calculate the original pressure of the gas in  
(i) bar, (ii) atm.

E1A.11 A perfect gas undergoes isothermal compression, which reduces its 
volume by 1.80 dm3. The final pressure and volume of the gas are 1.97 bar  
and 2.14 dm3, respectively. Calculate the original pressure of the gas in  
(i) bar, (ii) torr.

E1A.12 A car tyre (an automobile tire) was inflated to a pressure of 24 lb in−2 
(1.00 atm = 14.7 lb in−2) on a winter’s day when the temperature was −5 °C. 
What pressure will be found, assuming no leaks have occurred and that the 
volume is constant, on a subsequent summer’s day when the temperature is 
35 °C? What complications should be taken into account in practice?

E1A.13 A sample of hydrogen gas was found to have a pressure of 125 kPa 
when the temperature was 23 °C. What can its pressure be expected to be 
when the temperature is 11 °C?

E1A.14 A sample of 255 mg of neon occupies 3.00 dm3 at 122 K. Use the  
perfect gas law to calculate the pressure of the gas.

E1A.15 A homeowner uses 4.00 × 103 m3 of natural gas in a year to heat a 
home. Assume that natural gas is all methane, CH4, and that methane is a 
perfect gas for the conditions of this problem, which are 1.00 atm and 20 °C. 
What is the mass of gas used?

E1A.16 At 100 °C and 16.0 kPa, the mass density of phosphorus vapour is 
0.6388 kg m−3. What is the molecular formula of phosphorus under these 
conditions?

E1A.17 Calculate the mass of water vapour present in a room of volume  
400 m3 that contains air at 27 °C on a day when the relative humidity is  

60 per cent. Hint: Relative humidity is the prevailing partial pressure of water 
vapour expressed as a percentage of the vapour pressure of water vapour at 
the same temperature (in this case, 35.6 mbar).

E1A.18 Calculate the mass of water vapour present in a room of volume  
250 m3 that contains air at 23 °C on a day when the relative humidity is  
53 per cent (in this case, 28.1 mbar).

E1A.19 Given that the mass density of air at 0.987 bar and 27 °C is 
1.146 kg m−3, calculate the mole fraction and partial pressure of nitrogen 
and oxygen assuming that (i) air consists only of these two gases, (ii) air also 
contains 1.0 mole per cent Ar.

E1A.20 A gas mixture consists of 320 mg of methane, 175 mg of argon, and 
225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPa. Calculate  
(i) the volume and (ii) the total pressure of the mixture.

E1A.21 The mass density of a gaseous compound was found to be 1.23 kg m−3 
at 330 K and 20 kPa. What is the molar mass of the compound?

E1A.22 In an experiment to measure the molar mass of a gas, 250 cm3 of the 
gas was confined in a glass vessel. The pressure was 152 Torr at 298 K, and 
after correcting for buoyancy effects, the mass of the gas was 33.5 mg. What is 
the molar mass of the gas?

E1A.23 The densities of air at −85 °C, 0 °C, and 100 °C are 1.877 g dm−3, 
1.294 g dm−3, and 0.946 g dm−3, respectively. From these data, and assuming 
that air obeys Charles’s law, determine a value for the absolute zero of 
temperature in degrees Celsius.

E1A.24 A certain sample of a gas has a volume of 20.00 dm3 at 0 °C and 
1.000 atm. A plot of the experimental data of its volume against the Celsius 
temperature, θ, at constant p, gives a straight line of slope 0.0741 dm3 °C−1. 
From these data alone (without making use of the perfect gas law), determine 
the absolute zero of temperature in degrees Celsius.

E1A.25 A vessel of volume 22.4 dm3 contains 1.5 mol H2(g) and 2.5 mol N2(g)  
at 273.15 K. Calculate (i) the mole fractions of each component, (ii) their 
partial pressures, and (iii) their total pressure.

Problems
P1A.1 A manometer consists of a U-shaped tube containing a liquid. One side 
is connected to the apparatus and the other is open to the atmosphere. The 
pressure p inside the apparatus is given p = pex + ρgh, where pex is the external 

pressure, ρ is the mass density of the liquid in the tube, g = 9.806 m s−2 is the 
acceleration of free fall, and h is the difference in heights of the liquid in the 
two sides of the tube. (The quantity ρgh is the hydrostatic pressure exerted by 
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P4B.16 Figure 4B.1 gives a schematic representation of how the chemical 
potentials of the solid, liquid, and gaseous phases of a substance vary with 
temperature. All have a negative slope, but it is unlikely that they are straight 
lines as indicated in the illustration. Derive an expression for the curvatures, 
that is, the second derivative of the chemical potential with respect to 

temperature, of these lines. Is there any restriction on the value this curvature 
can take? For water, compare the curvature of the liquid line with that for the 
gas in the region of the normal boiling point. The molar heat capacities at 
constant pressure of the liquid and gas are 75.3 J K−1 mol−1 and 33.6 J K−1 mol−1, 
respectively.

FOCUS 4 Physical transformations of pure substances

Integrated activities
I4.1 Construct the phase diagram for benzene near its triple point at  
36 Torr and 5.50 °C from the following data: ∆fusH = 10.6 kJ mol−1,  
∆vapH = 30.8 kJ mol−1, ρ(s) = 0.891 g cm−3, ρ(l) = 0.879 g cm−3.

I4.2‡ In an investigation of thermophysical properties of methylbenzene  
R.D. Goodwin (J. Phys. Chem. Ref. Data 18, 1565 (1989)) presented 
expressions for two coexistence curves. The solid–liquid curve is given by

p p x x/bar /bar� � �3 1000 5 60 11 727( . . )   

where x = T/T3 − 1 and the triple point pressure and temperature are  
p3 = 0.4362 μbar and T3 = 178.15 K. The liquid–vapour curve is given by

ln( ) . . . .
. .

p y y y
y

/bar /� � � � �
� �

10 418 21 157 15 996 14 015
5 0120 4 733

2

3 44 1 1 70( ) .� y  

where y = T/Tc = T/(593.95 K). (a) Plot the solid–liquid and liquid–vapour 
coexistence curves. (b) Estimate the standard melting point of methylbenzene. 
(c) Estimate the standard boiling point of methylbenzene. (The equation you 
will need to solve to find this quantity cannot be solved by hand, so you should 
use a numerical approach, e.g. by using mathematical software.) (d) Calculate 
the standard enthalpy of vaporization of methylbenzene at the standard boiling 
point, given that the molar volumes of the liquid and vapour at the standard 
boiling point are 0.12 dm3 mol−1 and 30.3 dm3 mol−1, respectively.

I4.3 Proteins are polymers of amino acids that can exist in ordered structures 
stabilized by a variety of molecular interactions. However, when certain 
conditions are changed, the compact structure of a polypeptide chain may 
collapse into a random coil. This structural change may be regarded as a phase 
transition occurring at a characteristic transition temperature, the melting 
temperature, Tm, which increases with the strength and number of intermolecular 
interactions in the chain. A thermodynamic treatment allows predictions to 
be made of the temperature Tm for the unfolding of a helical polypeptide held 
together by hydrogen bonds into a random coil. If a polypeptide has N amino 
acid residues, N − 4 hydrogen bonds are formed to form an α-helix, the most 
common type of helix in naturally occurring proteins (see Topic 14D). Because 
the first and last residues in the chain are free to move, N − 2 residues form the 
compact helix and have restricted motion. Based on these ideas, the molar Gibbs 
energy of unfolding of a polypeptide with N ≥ 5 may be written as

� � �unfold hb hbG N H N T S� � � �( ) ( )4 2  

where ΔhbH and ΔhbS are, respectively, the molar enthalpy and entropy of 
dissociation of hydrogen bonds in the polypeptide. (a) Justify the form of the 
equation for the Gibbs energy of unfolding. That is, why are the enthalpy and 
entropy terms written as (N − 4)ΔhbH and (N − 2)ΔhbS, respectively? (b) Show 
that Tm may be written as

T N H
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hb

�
�
�
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( )

4
2
�
�

 

(c) Plot Tm/(ΔhbHm/ΔhbSm) for 5 ≤ N ≤ 20. At what value of N does Tm change 
by less than 1 per cent when N increases by 1?

I4.4‡ A substance as well-known as methane still receives research attention 
because it is an important component of natural gas, a commonly used fossil 
fuel. Friend et al. have published a review of thermophysical properties of 
methane (D.G. Friend, J.F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18, 
583 (1989)), which included the following vapour pressure data describing the 
liquid–vapour coexistence curve.

(a) Plot the liquid–vapour coexistence curve. (b) Estimate the standard 
boiling point of methane. (c) Compute the standard enthalpy of vaporization 
of methane (at the standard boiling point), given that the molar volumes of 
the liquid and vapour at the standard boiling point are 3.80 × 10−2 dm3 mol−1 
and 8.89 dm3 mol−1, respectively.

I4.5‡ Diamond is the hardest substance and the best conductor of heat yet 
characterized. For these reasons, it is used widely in industrial applications 
that require a strong abrasive. Unfortunately, it is difficult to synthesize 
diamond from the more readily available allotropes of carbon, such as 
graphite. To illustrate this point, the following approach can be used to 
estimate the pressure required to convert graphite into diamond at 25 °C (i.e. 
the pressure at which the conversion becomes spontaneous). The aim is to 
find an expression for ∆rG for the process graphite → diamond as a function 
of the applied pressure, and then to determine the pressure at which the Gibbs 
energy change becomes negative. (a) Derive the following expression for the 
pressure variation of ∆rG at constant temperature
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where Vm,gr is the molar volume of graphite and Vm,d that of diamond. (b) The 
difficulty with dealing with the previous expression is that the Vm depends 
on the pressure. This dependence is handled as follows. Consider ∆rG to be a 
function of pressure and form a Taylor expansion about p = p⦵:
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where the derivatives are evaluated at p = p⦵ and the series is truncated after 
the second-order term. Term A can be found from the expression in part (a) 
by using the molar volumes at p⦵. Term B can be found by using a knowledge 
of the isothermal compressibility of the solids, κT = −(1/V)(∂V/∂p)T. Use this 
definition to show that at constant temperature

 �
�

�
�
�

� � � �
2

2

�r
m,d m,gr ,d m,d ,gr m,gr

G
p p

V V V VT T( ) � �  

where κT,d and κT,gr are the isothermal compressibilities of diamond and 
graphite, respectively. (c) Substitute the results from (a) and (b) into the 

⦵⦵

⦵ ⦵ ⦵

T/K 100 108 110 112 114 120 130 140 150 160 170 190
p/MPa 0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.041 1.593 2.329 4.521
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Self-check questions
This edition introduces self-check questions throughout the 
text, which can be found at the end of most sections in the 
e-book. They test your comprehension of the concepts dis-
cussed in each section, and provide instant feedback to help 
you monitor your progress and reinforce your learning. Some 
of the questions are multiple choice; for them the ‘wrong’ an-
swers are not simply random numbers but the result of errors 
that, in our experience, students often make. The feedback 
from the multiple choice questions not only explains the cor-
rect method, but also points out the mistakes that led to the 
incorrect answer. By working through the multiple-choice 
questions you will be well prepared to tackle more challenging 
exercises and problems.

Discussion questions
Discussion questions appear at the end of each Focus, and are 
organized by Topic. They are designed to encourage you to 
reflect on the material you have just read, to review the key 
concepts, and sometimes to think about its implications and 
limitations. 

Exercises and problems
Exercises are provided throughout the main text and, along 
with Problems, at the end of every Focus. They are all organ-
ised by Topic. Exercises are designed as relatively straightfor-
ward numerical tests; the Problems are more challenging and 
typically involve constructing a more detailed answer. For this 
new edition, detailed solutions are provided in the e-book in 
the same location as they appear in print.

For the Examples and Problems at the end of each Focus de-
tailed solutions to the odd-numbered questions are provided 
in the e-book; solutions to the even-numbered questions are 
available only to lecturers. 

Integrated activities
At the end of every Focus you will find questions that span 
several Topics. They are designed to help you use your 
knowledge creatively in a variety of ways. 



‘Impact’ sections
‘Impact’ sections show you how physical chemistry is ap-
plied in a variety of modern contexts. They showcase physical 
chemistry as an evolving subject. These sections are listed at 
the beginning of the text, and are referred to at appropriate 
places elsewhere. You can find a compilation of ‘Impact’ sec-
tions at the end of the e-book.

A deeper look
These sections take some of the material in the text further. 
Read them if you want to extend your knowledge and see the 

details of some of the more advanced derivations. They are 
listed at the beginning of the text and are referred to where 
they are relevant. You can find a compilation of Deeper Looks 
at the end of the e-book.

Group theory tables
If you need character tables, you can find them at the end of 
the Resource section.

TAKING YOUR LEARNING FURTHER

TO THE INSTRUC TOR

We have designed the text to give you maximum flexibility in 
the selection and sequence of Topics, while the grouping of 
Topics into Focuses helps to maintain the unity of the subject. 
Additional resources are:

Figures and tables from the book
Lecturers can find the artwork and tables from the book in 
ready-to-download format. They may be used for lectures 
without charge (but not for commercial purposes without spe-
cific permission).

Key equations
Supplied in Word format so you can download and edit them.

Solutions to exercises, problems, and  
integrated activities
For the discussion questions, examples, problems, and in-
tegrated activities detailed solutions to the even-numbered 
questions are available to lecturers online, so they can be set as 
homework or used as discussion points in class. 

Lecturer resources are available only to registered adopters 
of the textbook. To register, simply visit www.oup.com/he/
pchem12e and follow the appropriate links.

xii Using the book

www.oup.com/he/pchem12e
www.oup.com/he/pchem12e
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ENERGY A First Look

Much of chemistry is concerned with the transfer and trans-
formation of energy, so right from the outset it is important to 
become familiar with this concept. The first ideas about energy 
emerged from classical mechanics, the theory of motion for-
mulated by Isaac Newton in the seventeenth century. In the 
twentieth century classical mechanics gave way to quantum 
mechanics, the theory of motion formulated for the descrip-
tion of small particles, such as electrons, atoms, and molecules. 
In quantum mechanics the concept of energy not only survived 
but was greatly enriched, and has come to underlie the whole of 
physical chemistry.

1 Force

Classical mechanics is formulated in terms of the forces acting 
on particles, and shows how the paths of particles respond to 
them by accelerating or changing direction. Much of the dis-
cussion focuses on a quantity called the ‘momentum’ of the 
particle.

(a) Linear momentum
‘Translation’ is the motion of a particle through space. The 
velocity, v, of a particle is the rate of change of its position. 
Velocity is a ‘vector quantity’, meaning that it has both a direc-
tion and a magnitude, and is expressed in terms of how fast 
the particle travels with respect to x-, y-, and z-axes (Fig.  1). 

For   example, the x-component, vx, is the particle’s rate of 
change of position along the x-axis:

 vx
x
t

=
d
d

Component of velocity  
[definition]  (1a)

Similar expressions may be written for the y- and z- components.  
The magnitude of the velocity, as represented by the length of 
the velocity vector, is the speed, v. Speed is related to the com-
ponents of velocity by

 v v v v� � �( )x y z
2 2 2 1 2/ Speed 

[definition] (1b)

The linear momentum, p, of a particle, like the velocity, is 
a vector quantity, but takes into account the mass of the parti-
cle as well as its speed and direction. Its components are px, py, 
and pz along each axis (Fig. 1b) and its magnitude is p. A heavy 
particle travelling at a certain speed has a greater linear mo-
mentum than a light particle travelling at the same speed. For a 
particle of mass m, the x-component of the linear momentum 
is given by

 p mx x= v Component  of  linear  momentum 
[definition]

 (2)

and similarly for the y- and z-components.

Figure 1 (a) The velocity v is denoted by a vector of magnitude 
v (the speed) and an orientation that indicates the direction 
of translational motion. (b) Similarly, the linear momentum p 
is denoted by a vector of magnitude p and an orientation that 
corresponds to the direction of motion.
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Brief illustration 1

Imagine a particle of mass m attached to a spring. When the 
particle is displaced from its equilibrium position and then 
released, it oscillates back and forth about this equilibrium 
position. This model can be used to describe many features 
of a chemical bond. In an idealized case, known as the simple 
harmonic oscillator, the displacement from equilibrium x(t) 
varies with time as

x t A t( ) sin� 2��

In this expression, ν  (nu) is the frequency of the oscillation 
and A is its amplitude, the maximum value of the displace-
ment along the x-axis. The x-component of the velocity of the 
particle is therefore

vx
x
t

A t
t

A t� � �
d
d

d
d

( sin ) cos2 2 2�
� �

�
� �

The x-component of the linear momentum of the particle is

p m Am tx x� �v 2 2� �� �cos
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(c) Newton’s second law of motion
The central concept of classical mechanics is Newton’s second 
law of motion, which states that the rate of change of momen-
tum is equal to the force acting on the particle. This law underlies 
the calculation of the trajectory of a particle, a statement about 
where it is and where it is moving at each moment of time. Like 

(b) Angular momentum
‘Rotation’ is the change of orientation in space around a cen-
tral point (the ‘centre of mass’). Its description is very similar to 
that of translation but with ‘angular velocity’ taking the place of 
velocity and ‘moment of inertia’ taking the place of mass. The 
angular velocity, ω (omega) is the rate of change of orientation 
(for example, in radians per second); it is a vector with magni-
tude ω. The moment of inertia, I, is a measure of the mass that 
is being swung round by the rotational motion. For a particle 
of mass m moving in a circular path of radius r, the moment of 
inertia is

 I mr= 2 Moment  of  inertia 
[definition]  (3a)

For a molecule composed of several atoms, each atom i gives a 
contribution of this kind, and the moment of inertia around a 
given axis is

 I m r
i

i i�� 2 (3b)

where ri is the perpendicular distance from the mass mi to 
the axis. The rotation of a particle is described by its angular 
momentum, J, a vector with a length that indicates the rate at 
which the particle circulates and a direction that indicates the 
axis of rotation (Fig. 2). The components of angular momen-
tum, Jx, Jy, and Jz, on three perpendicular axes show how much 
angular momentum is associated with rotation around each 
axis. The magnitude J of the angular momentum is

 J I� � Magnitude of  angular  momentum 
[definition]

 (4)

Brief illustration 2

A CO2 molecule is linear, and the length of each CO bond 
is  116 pm. The mass of each 16O atom is 16.00mu, where  
mu = 1.661 × 10−27 kg. It follows that the moment of inertia of 
the molecule around an axis perpendicular to the axis of the 
molecule and passing through the C atom is

I m R m R m R� � � �

� � � � � �� �
O O O

kg m

2 2 2

27 10 2

0 2
2 16 00 1 661 10 1 16 10( . . ) ( . )

�� � �7 15 10 46 2. kg m

Brief illustration 3

According to ‘Hooke’s law’, the force acting on a particle under-
going harmonic motion (like that in Brief illustration 2) is 
proportional to the displacement and directed opposite to the 
direction of motion, so in one dimension

F k xx � � f

where x is the displacement from equilibrium and kf is the 
‘force constant’, a measure of the stiffness of the spring (or 
chemical bond). It then follows that the equation of motion 
of a particle undergoing harmonic motion is dpx/dt = −kfx. 
Then, because px = mvx and vx = dx/dt, it follows that dpx/dt =  
mdvx/dt = md2x/dt2. With this substitution, the equation of 
motion becomes

m x
t

kxd
d

2

2 � �

Figure 2 The angular momentum J of a particle is represented by 
a vector along the axis of rotation and perpendicular to the plane 
of rotation. The length of the vector denotes the magnitude J of 
the angular momentum. The direction of motion is clockwise to 
an observer looking in the direction of the vector.

x

y

z

Jx
Jy

Jz

J

the velocity and momentum, the force, F, is a vector quantity 
with a direction and a magnitude (the ‘strength’ of the force). 
Force is reported in newtons, with 1 N = 1 kg m s−2. For motion 
along the x-axis Newton’s second law states that

 
d
d
p
t

Fx
x= Newton’s second law  

[in one dimension]  (5a)

where Fx is the component of the force acting along the x-axis. 
Each component of linear momentum obeys the same kind of 
equation, so the vector p changes with time as

 
d
d

p F
t
= Newton’s second law 

[vector form]  (5b)

Equation 5 is the equation of motion of the particle, the equa-
tion that has to be solved to calculate its trajectory.



ENERGY A First Look xxxv

Equations of this kind, which are called ‘differential equations’, 
are solved by special techniques. In most cases in this text, the 
solutions are simply stated without going into the details of 
how they are found.

Similar considerations apply to rotation. The change in 
angular momentum of a particle is expressed in terms of the 
torque, T, a twisting force. The analogue of eqn 5b is then

 
d
d

J T
t
=  (6)

Quantities that describe translation and rotation are analogous, 
as shown below:

(b) The definition of energy
Now we get to the core of this discussion. Energy is the capacity 
to do work. An object with a lot of energy can do a lot of work; 
one with little energy can do only little work. Thus, a spring that 
is compressed can do a lot of work as it expands, so it is said 
to have a lot of energy. Once the spring is expanded it can do 
only a little work, perhaps none, so it is said to have only a little 
energy. The SI unit of energy is the same as that of work, namely 
the joule, with 1 J = 1 kg m2 s−2.

A particle may possess two kinds of energy, kinetic energy 
and potential energy. The kinetic energy, Ek, of a particle is the 
energy it possesses as a result of its motion. For a particle of 
mass m travelling at a speed v,

 E mk = 1
2

2v Kinetic  energy 
[definition]  (8a)

A particle with a lot of kinetic energy can do a lot of work, in 
the sense that if it collides with another particle it can cause it to 
move against an opposing force. Because the magnitude of the 
linear momentum and speed are related by p = mv, so v = p/m, 
an alternative version of this relation is

 E p
mk =
2

2
 (8b)

It follows from Newton’s second law that if a particle is initially 
stationary and is subjected to a constant force then its linear 
momentum increases from zero. Because the magnitude of the 

Property Translation Rotation

Rate linear velocity, v angular velocity, ω

Resistance to change mass, m moment of inertia, I

Momentum linear momentum, p angular momentum, J

Influence on motion force, F torque, T

2 Energy

Energy is a powerful and essential concept in science; never-
theless, its actual nature is obscure and it is difficult to say what 
it ‘is’. However, it can be related to processes that can be meas-
ured and can be defined in terms of the measurable process 
called work.

(a) Work
Work, w, is done in order to achieve motion against an op-
posing force. The work needed to be done to move a particle 
through the infinitesimal distance dx against an opposing 
force Fx is

 d  the particlew F xxon d� � Work 
[definition] (7a)

When the force is directed to the left (to negative x), Fx is nega-
tive, so for motion to the right (dx positive), the work that must 
be done to move the particle is positive. With force in newtons 
and distance in metres, the units of work are joules (J), with 
1 J = 1 N m = 1 kg m2 s–2.

The total work that has to be done to move a particle from 
xinitial to xfinal is found by integrating eqn 7a, allowing for the 
possibility that the force may change at each point along 
the path:

 w F xxx

x

on the particle d
initial

final� �� Work (7b)

Brief illustration 4

Suppose that when a bond is stretched from its equilibrium 
value Re to some arbitrary value R there is a restoring force 
proportional to the displacement x = R – Re from the equilib-
rium length. Then

F k R R k xx � � � � �f e f( )

The constant of proportionality, kf, is the force constant intro-
duced in Brief illustration 3. The total work needed to move 
an  atom so that the bond stretches from zero displacement 
(xinitial = 0), when the bond has its equilibrium length, to a dis-
placement xfinal = Rfinal – Re is

w k x x k x x
x x

on an atom f f d  dfinal final

Integral A.

� � � �� �( )
0 0

1���� ��

� � �1
2

2 1
2

2k x k R Rf final f final e( )

(All the integrals required in this book are listed in the Resource 
section.) The work required increases as the square of the dis-
placement: it takes four times as much work to stretch a bond 
through 20 pm as it does to stretch the same bond through 
10 pm.
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applied force may be varied at will, the momentum and there-
fore the kinetic energy of the particle may be increased to any 
value.

The potential energy, Ep or V, of a particle is the energy it 
possesses as a result of its position. For instance, a stationary 
weight high above the surface of the Earth can do a lot of work 
as it falls to a lower level, so is said to have more energy, in this 
case potential energy, than when it is resting on the surface of 
the Earth.

This definition can be turned around. Suppose the weight is 
returned from the surface of the Earth to its original height. The 
work needed to raise it is equal to the potential energy that it 
once again possesses. For an infinitesimal change in height, dx, 
that work is −Fxdx. Therefore, the infinitesimal change in po-
tential energy is dEp = −Fxdx. This equation can be rearranged 
into a relation between the force and the potential energy:

 F
E
x

F V
xx x� � � �

d
d

  or  d
d

p Relation of force 
to potential energgy (9)

No universal expression for the dependence of the potential 
energy on position can be given because it depends on the type 
of force the particle experiences. However, there are two very 
important specific cases where an expression can be given. For 
a particle of mass m at an altitude h close to the surface of the 
Earth, the gravitational potential energy is

 E h E mghp p( ) ( )� �0 Gravitational potential energy 
[close to surrface of the Earth]

 (10)

where g is the acceleration of free fall (g depends on location, 
but its ‘standard value’ is close to 9.81 m s–2). The zero of poten-
tial energy is arbitrary. For a particle close to the surface of the 
Earth, it is common to set Ep(0) = 0.

The other very important case (which occurs whenever 
the structures of atoms and molecules are discussed), is the 
electrostatic potential energy between two electric charges Q 1 
and Q 2 at a separation r in a vacuum. This Coulomb  potential 
energy is

 E r
rp ( ) �

Q Q1 2

04��
Coulomb potential energy
[in a vacuum]  (11)

Charge is expressed in coulombs (C). The constant ε0 (epsilon 
zero) is the electric constant (or vacuum permittivity), a fun-
damental constant with the value 8.854 × 10–12 C2 J–1 m–1. It is 
conventional (as in eqn 11) to set the potential energy equal to 
zero at infinite separation of charges.

The total energy of a particle is the sum of its kinetic and 
potential energies:

 E E E E E V� � � �k p k, or  Total energy (12)

A fundamental feature of nature is that energy is conserved; 
that is, energy can neither be created nor destroyed. Although 

 energy can be transformed from one form to another, its total 
is constant.

An alternative way of thinking about the potential en-
ergy arising from the interaction of charges is in terms of the 
 potential, which is a measure of the ‘potential’ of one charge to 
affect the potential energy of another charge when the second 
charge is brought into its vicinity. A charge Q 1 gives rise to a 
Coulomb potential ϕ1 (phi) such that the potential energy of 
the interaction with a second charge Q 2 is Q 2ϕ1(r). Comparison 
of this expression with eqn 11 shows that

 �
�1

1

04
( )r

r
�

Q

�
Coulomb potential 
[in a vacuum]  (13)

The units of potential are joules per coulomb, J C–1, so when the 
potential is multiplied by a charge in coulombs, the result is the 
potential energy in joules. The combination joules per coulomb 
occurs widely and is called a volt (V): 1 V = 1 J C–1.

The language developed here inspires an important alterna-
tive energy unit, the electronvolt (eV): 1 eV is defined as the 
potential energy acquired when an electron is moved through 
a potential difference of 1 V. The relation between electronvolts 
and joules is

 1 1 602 10 19eV � � �. J

Many processes in chemistry involve energies of a few electron-
volts. For example, to remove an electron from a sodium atom 
requires about 5 eV.

3 Temperature

A key idea of quantum mechanics is that the translational en-
ergy of a molecule, atom, or electron that is confined to a re-
gion of space, and any rotational or vibrational energy that a 
molecule possesses, is quantized, meaning that it is restricted 
to certain discrete values. These permitted energies are called 
energy levels. The values of the permitted energies depend on 
the characteristics of the particle (for instance, its mass) and for 
translation the extent of the region to which it is confined. The 
allowed energies are widest apart for particles of small mass 
confined to small regions of space. Consequently, quantization 
must be taken into account for electrons bound to nuclei in 
atoms and molecules. It can be ignored for macroscopic bodies, 
for which the separation of all kinds of energy levels is so small 
that for all practical purposes their energy can be varied virtu-
ally continuously.

Figure 3 depicts the typical energy level separations associ-
ated with rotational, vibrational, and electronic motion. The 
separation of rotational energy levels (in small molecules, 
about 10−21 J, corresponding to about 0.6 kJ mol−1) is smaller 
than that of vibrational energy levels (about 10−20–10−19 J, or 
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 molecule are zero. As the value of T is increased (the ‘tempera-
ture is raised’), the populations of higher energy states increase, 
and the distribution becomes more uniform. This behaviour is 
illustrated in Fig. 4 for a system with five states of different en-
ergy. As predicted by eqn 14a, as the temperature approaches 
infinity (T → ∞), the states become equally populated.

In chemical applications it is common to use molar energies, 
Em,i, with Em,i = NAεi, where NA is Avogadro’s constant. Then  
eqn 14a becomes

 
N
N

i

j

E N E N kT E E N kT E Ei j i j i� � �� � � � � �e e em, A m, A m, m, A m, m,/ / / /( ) ( ) ( jj RT)/
 (14b)

where R = NAk. The constant R is known as the ‘gas constant’; 
it appears in expressions of this kind when molar, rather than 
molecular, energies are specified. Moreover, because it is simply 
the molar version of the more fundamental Boltzmann con-
stant, it occurs in contexts other than gases.

6–60 kJ mol−1), which itself is smaller than that of electronic en-
ergy levels (about 10−18 J, corresponding to about 600 kJ mol −1).

(a) The Boltzmann distribution
The continuous thermal agitation that molecules experience in 
a sample ensures that they are distributed over the available en-
ergy levels. This distribution is best expressed in terms of the 
occupation of states. The distinction between a state and a level 
is that a given level may be comprised of several states all of 
which have the same energy. For instance, a molecule might be 
rotating clockwise with a certain energy, or rotating counter-
clockwise with the same energy. One particular molecule may 
be in a state belonging to a low energy level at one instant, and 
then be excited into a state belonging to a high energy level a 
moment later. Although it is not possible to keep track of which 
state each molecule is in, it is possible to talk about the average 
number of molecules in each state. A remarkable feature of na-
ture is that, for a given array of energy levels, how the molecules 
are distributed over the states depends on a single parameter, 
the ‘temperature’, T.

The population of a state is the average number of mol-
ecules that occupy it. The populations, whatever the nature of 
the states (translational, rotational, and so on), are given by 
a formula derived by Ludwig Boltzmann and known as the 
Boltzmann distribution. According to Boltzmann, the ratio of 
the populations of states with energies εi and εj is
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Boltzmann distribution (14a)

where k is Boltzmann’s constant, a fundamental constant with 
the value k = 1.381 × 10–23 J K–1 and T is the temperature, the 
parameter that specifies the relative populations of states, re-
gardless of their type. Thus, when T = 0, the populations of 
all states other than the lowest state (the ‘ground state’) of the 

Brief illustration 5

Methylcyclohexane molecules may exist in one of two confor-
mations, with the methyl group in either an equatorial or axial 
position. The equatorial form lies 6.0 kJ mol–1 lower in energy 
than the axial form. The relative populations of molecules in 
the axial and equatorial states at 300 K are therefore
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The number of molecules in an axial conformation is therefore 
just 9 per cent of those in the equatorial conformation.

Figure 3 The energy level separations typical of four types of 
system. (1 zJ = 10–21 J; in molar terms, 1 zJ is equivalent to about 
0.6 kJ mol–1.)

C
o

n
ti

n
u

u
m

Translation Rotation Vibration Electronic

1 
zJ

10
–1

00
 z

J

1 
aJ

 (
10

00
 z

J)

E
n

er
g

y

T = 0 T = �

Figure 4 The Boltzmann distribution of populations (represented 
by the horizontal bars) for a system of five states with different 
energies as the temperature is raised from zero to infinity. Interact 
with the dynamic version of this graph in the e-book.



xxxviii ENERGY A First Look

The important features of the Boltzmann distribution to bear 
in mind are:

• The distribution of populations is an exponential func-
tion of energy and the temperature. As the temperature is 
increased, states with higher energy become progressively 
more populated.

• States closely spaced in energy compared to kT are more 
populated than states that are widely spaced compared  
to kT.

The energy spacings of translational and rotational states are 
typically much less than kT at room temperature. As a result, 
many translational and rotational states are populated. In con-
trast, electronic states are typically separated by much more 
than kT. As a result, only the ground electronic state of a mol-
ecule is occupied at normal temperatures. Vibrational states are 
widely separated in small, stiff molecules and only the ground 
vibrational state is populated. Large and flexible molecules are 
also found principally in their ground vibrational state, but 
might have a few higher energy vibrational states populated at 
normal temperatures.

(b) The equipartition theorem
For gases consisting of non-interacting particles it is often pos-
sible to calculate the average energy associated with each type 

of motion by using the equipartition theorem. This theorem 
arises from a consideration of how the energy levels associated 
with different kinds of motion are populated according to the 
Boltzmann distribution. The theorem states that

At thermal equilibrium, the average value of each 
quadratic contribution to the energy is 1

2 kT .

A ‘quadratic contribution’ is one that is proportional to the 
square of the momentum or the square of the displacement 
from an equilibrium position. For example, the kinetic energy 
of a particle travelling in the x-direction is E p mxk /= 2 2 . This 
motion therefore makes a contribution of 1

2 kT  to the energy.
The energy of vibration of atoms in a chemical bond has two 

quadratic contributions. One is the kinetic energy arising from 
the back and forth motion of the atoms. Another is the poten-
tial energy which, for the harmonic oscillator, is E k xp f= 1

2
2 and 

is a second quadratic contribution. Therefore, the total average 
energy is 1

2
1
2kT kT kT� � .

The equipartition theorem applies only if many of the states 
associated with a type of motion are populated. At tempera-
tures of interest to chemists this condition is always met for 
translational motion, and is usually met for rotational motion. 
Typically, the separation between vibrational and electronic 
states is greater than for rotation or translation, and as only a 
few states are occupied (often only one, the ground state), the 
equipartition theorem is unreliable for these types of motion.

Checklist of concepts

☐ 1. Newton’s second law of motion states that the rate of 
change of momentum is equal to the force acting on the 
particle.

☐ 2. Work is done in order to achieve motion against an 
opposing force. Energy is the capacity to do work.

☐ 3. The kinetic energy of a particle is the energy it possesses 
as a result of its motion.

☐ 4. The potential energy of a particle is the energy it pos-
sesses as a result of its position.

☐ 5. The total energy of a particle is the sum of its kinetic and 
potential energies.

☐ 6. The Coulomb potential energy between two charges 
separated by a distance r varies as 1/r.

☐ 7. The energy levels of confined particles are quantized, as 
are those of rotating or vibrating molecules.

☐ 8. The Boltzmann distribution is a formula for calculating 
the relative populations of states of various energies.

☐ 9. The equipartition theorem states that for a sample at 
thermal equilibrium the average value of each quadratic 
contribution to the energy is 1

2 kT .
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Property Equation Comment Equation number

Component of velocity in x direction vx x t= d /d Definition; likewise for y and z 1a

Component of linear momentum in x direction p mx x= v Definition; likewise for y and z 2

Moment of inertia I = mr2

I m r
i

i i� � 2

Point particle
Molecule

3a
3b

Angular momentum J = Iω 4

Equation of motion F p tx x= d /d Motion along x-direction 5a

F = dp/dt Newton’s second law of motion 5b

T = dJ/dt Rotational motion 6

Work opposing a force in the x direction dw = –Fxdx Definition 7a

Kinetic energy Ek = 1
2 mv2 Definition; v is the speed 8a

Potential energy and force F V xx � �d /d One dimension 9

Coulomb potential energy E r rp /( ) �Q Q1 2 04�� In a vacuum 11

Coulomb potential � �1 1 04( )r r�Q / � In a vacuum 13

Boltzmann distribution N Ni j
kTi j/ e /� � �( )� � 14a

Checklist of equations
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FOCUS 1

The properties of gases

A gas is a form of matter that fills whatever container it occu-
pies. This Focus establishes the properties of gases that are used 
throughout the text.

1A The perfect gas

This Topic is an account of an idealized version of a gas, a ‘per-
fect gas’, and shows how its equation of state may be assembled 
from the experimental observations summarized by Boyle’s 
law, Charles’s law, and Avogadro’s principle.
1A.1  Variables of state; 1A.2  Equations of state

1B The kinetic model

A central feature of physical chemistry is its role in building 
models of molecular behaviour that seek to explain observed 
phenomena. A prime example of this procedure is the develop-
ment of a molecular model of a perfect gas in terms of a col-
lection of molecules (or atoms) in ceaseless, essentially random 
motion. As well as accounting for the gas laws, this model can 
be used to predict the average speed at which molecules move in 
a gas, and its dependence on temperature. In combination with 
the Boltzmann distribution (see Energy: A first look), the model 
can also be used to predict the spread of molecular speeds and 
its dependence on molecular mass and temperature.
1B.1  The model; 1B.2  Collisions

1C Real gases

The perfect gas is a starting point for the discussion of prop-
erties of all gases, and its properties are invoked throughout 
thermodynamics. However, actual gases, ‘real gases’, have prop-
erties that differ from those of perfect gases, and it is necessary 
to be able to interpret these deviations and build the effects of 
molecular attractions and repulsions into the model. The dis-
cussion of real gases is another example of how initially primi-
tive models in physical chemistry are elaborated to take into 
account more detailed observations.
1C.1  Deviations from perfect behaviour; 1C.2  The van der Waals 
equation

What is an application of this material?

The perfect gas law and the kinetic theory can be applied to the 
study of phenomena confined to a reaction vessel or encom-
passing an entire planet or star. In Impact 1, accessed via the  
e-book, the gas laws are used in the discussion of meteoro-
logical phenomena—the weather. Impact 2, accessed via the  
e-book, examines how the kinetic model of gases has a surpris-
ing application: to the discussion of dense stellar media, such as 
the interior of the Sun.

➤  Go to the e-book for videos that feature the derivation and interpretation of equations, and applications of this material.



➤  Why do you need to know this material?
The relation between the pressure, volume, and tempera-
ture of a perfect gas is used extensively in the develop-
ment of quantitative theories about the physical and 
chemical behaviour of real gases. It is also used extensively 
throughout thermodynamics.

➤  What is the key idea?
The perfect gas law, which describes the relation between 
the pressure, volume, temperature, and amount of sub-
stance, is a limiting law that is obeyed increasingly well as 
the pressure of a gas tends to zero.

➤  What do you need to know already?
You need to know how to handle quantities and units in 
calculations, as reviewed in the Resource section.

these collisions are so numerous that the force, and hence the 
pressure, is steady.

The SI unit of pressure is the pascal, Pa, defined as 1 Pa = 
1 N m−2 = 1 kg m−1 s−2. Several other units are still widely used, 
and the relations between them are given in Table 1A.1. Because 
many physical properties depend on the pressure acting on a 
sample, it is appropriate to select a certain value of the pressure 
to report their values. The standard pressure, p⦵, for reporting 
physical quantities is currently defined as p⦵ = 1 bar (that is, 
105 Pa) exactly. This pressure is close to, but not the same as, 
1 atm, which is typical for everyday conditions.

Consider the arrangement shown in Fig. 1A.1 where two 
gases in separate containers share a common movable wall. 
In Fig. 1A.1a the gas on the left is at higher pressure than that 
on the right, and so the force exerted on the wall by the gas on 
the left is greater than that exerted by the gas on the right. As 
a result, the wall moves to the right, the pressure on the left 

The properties of gases were among the first to be established 
quantitatively (largely during the seventeenth and eighteenth 
centuries) when the technological requirements of travel in 
balloons stimulated their investigation. This Topic reviews how 
the physical state of a gas is described using variables such as 
pressure and temperature, and then discusses how these vari-
ables are related.

1A.1 Variables of state

The physical state of a sample of a substance, its physical condi-
tion, is defined by its physical properties. Two samples of the 
same substance that have the same physical properties are said 
to be ‘in the same state’. The variables of state, the variables 
needed to specify the state of a system, are the amount of sub-
stance it contains, n; the volume it occupies, V; the pressure, p; 
and the temperature, T.

1A.1(a) Pressure and volume
The pressure, p, that an object experiences is defined as the 
force, F, applied divided by the area, A, to which that force is 
applied. A gas exerts a pressure on the walls of its container as 
a result of the collisions between the molecules and the walls: 

TOPIC 1A The perfect gas

Table 1A.1 Pressure units*

Name Symbol Value

pascal Pa 1 Pa = 1 N m−2, 1 kg m−1 s−2

bar bar 1 bar = 105 Pa

atmosphere atm 1 atm = 101.325 kPa

torr Torr 1 Torr = (101 325/760) Pa = 133.32 … Pa

millimetres of mercury mmHg 1 mmHg = 133.322 … Pa

pounds per square inch psi 1 psi = 6.894 757 … kPa

* Values in bold are exact.

Figure 1A.1 (a) When a region of high pressure is separated from 
a region of low pressure by a movable wall, the wall will be pushed 
into the low pressure region until the pressures are equal. (b) When 
the two pressures are identical, the wall will stop moving. At this 
point there is mechanical equilibrium between the two regions.

Movable
wall

High
pressure

Low
pressure

Equal
pressures

Equal
pressures

(a)

(b)
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 decreases, and that on the right increases. Eventually (as in 
Fig.  1A.1b) the two pressures become equal and the wall no 
longer moves. This condition of equality of pressure on either 
side of a movable wall is a state of mechanical equilibrium be-
tween the two gases.

The pressure exerted by the atmosphere is measured with 
a barometer. The original version of a barometer (which was 
invented by Torricelli, a student of Galileo) involved taking a 
glass tube, sealed at one end, filling it with mercury and then 
up-ending it (without letting in any air) into a bath of mercury. 
The pressure of the atmosphere acting on the surface of the 
mercury in the bath supports a column of mercury of a certain 
height in the tube: the pressure at the base of the column, due 
to the mercury in the tube, is equal to the atmospheric pressure. 
As the atmospheric pressure changes, so does the height of the 
column.

The pressure of gas in a container, and also now the atmos-
phere, is measured by using a pressure gauge, which is a de-
vice with properties that respond to pressure. For instance, 
in a Bayard–Alpert pressure gauge the molecules present in 
the gas are ionized and the resulting current of ions is inter-
preted in terms of the pressure. In a capacitance manometer, 
two electrodes form a capacitor. One electrode is fixed and the 
other is a diaphragm which deflects as the pressure changes. 
This deflection causes a change in the capacitance, which is 
measured and interpreted as a pressure. Certain semiconduc-
tors also respond to pressure and are used as transducers in 
solid-state pressure gauges, including those in mobile phones 
(cell phones).

The volume, V, of a gas is a measure of the extent of the re-
gion of space it occupies. The SI unit of volume is m3.

1A.1(b) Temperature
The temperature is formally a property that determines in 
which direction energy will flow as heat when two samples 
are placed in contact through thermally conducting walls: 
 energy flows from the sample with the higher temperature to 
the sample with the lower temperature. The symbol T denotes 
the  thermodynamic temperature, which is an absolute scale 
with T = 0 as the lowest point. Temperatures above T = 0 are 
expressed by using the Kelvin scale, in which the gradations 
of temperature are expressed in kelvins (K; not °K). Until 2019, 
the Kelvin scale was defined by setting the triple point of water 
(the temperature at which ice, liquid water, and water vapour 
are in mutual equilibrium) at exactly 273.16 K. The scale has 
now been redefined by referring it to the more precisely known 
value of the Boltzmann constant.

There are many devices used to measure temperature. They 
vary from simple devices that measure the expansion of a liquid 
along a tube, as commonly found in laboratories, to electronic 
devices where the resistance of a material or the potential differ-
ence developed at a junction is related to the temperature.

The Celsius scale of temperature is commonly used to ex-
press temperatures. In this text, temperatures on the Celsius 
scale are denoted θ (theta) and expressed in degrees Celsius (°C).  
The thermodynamic and Celsius temperatures are related by 
the exact expression

 T /K / C  � � �� 273 15. Celsius scale
[definition]  (1A.1)

This relation is the definition of the Celsius scale in terms of the 
more fundamental Kelvin scale. It implies that a difference in 
temperature of 1 °C is equivalent to a difference of 1 K.

The lowest temperature on the thermodynamic tempera-
ture scale is written T = 0, not T = 0 K. This scale is absolute,  
and the lowest temperature is 0 regardless of the size of the 
divisions on the scale (just as zero pressure is denoted p = 0, 
regardless of the size of the units, such as bar or pascal). 
However, it is appropriate to write 0 °C because the Celsius 
scale is not absolute.

1A.1(c) Amount
In day-to-day conversation ‘amount’ has many meanings but 
in physical science it has a very precise definition. The amount 
of substance, n, is a measure of the number of specified enti-
ties present in the sample; these entities may be atoms, or mol-
ecules, or formula units. The SI unit of amount of substance is 
the mole (mol). The amount of substance is commonly referred 
to as the ‘chemical amount’ or simply ‘amount’.

Until 2019 the mole was defined as the number of car-
bon atoms in exactly 12 g of carbon-12. However, it has been 
redefined such that 1 mol of a substance contains exactly 
6 022140 76 1023. ×  entities. The number of entities per mole is 
called Avogadro’s constant, NA. It follows from the definition 
of the mole that NA mol� �6 022140 76 1023 1. .�  Note that NA is 
a constant with units, not a pure number. Also, it is not correct 
to specify amount as the ‘number of moles’: the correct phrase 
is ‘amount in moles’.

The amount of substance is related to the mass, m, of the sub-
stance through the molar mass, M, which is the mass per mole 
of its atoms, its molecules, or its formula units. The SI unit of 
molar mass is kg mol−1 but it is more common to use g mol−1. 
The amount of substance of specified entities in a sample can 
readily be calculated from its mass by using

 n m
M

= Amount of substance  (1A.2)

1A.1(d) Intensive and extensive properties
Suppose a sample is divided into smaller samples. If a prop-
erty of the original sample has a value that is equal to the sum 
of its values in all the smaller samples, then it is said to be an 
 extensive property. Amount, mass, and volume are examples of 
extensive properties. If a property retains the same value as in 
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the original sample for all the smaller samples, then it is said to 
be intensive. Temperature and pressure are examples of inten-
sive properties.

The value of a property X divided by the amount n gives the 
molar value of that property Xm: that is, Xm = X/n. All molar 
properties are intensive, whereas X and n are both extensive. 
The mass density, ρ = m/V, is also intensive.

1A.2 Equations of state

Although in principle the state of a pure substance is specified 
by giving the values of n, V, p, and T, it has been established 
experimentally that it is sufficient to specify only three of these 
variables because doing so fixes the value of the fourth vari-
able. That is, it is an experimental fact that each substance is de-
scribed by an equation of state, an equation that interrelates 
these four variables.

The general form of an equation of state is

 p f T V n= ( ), ,       General form of an equation of state (1A.3)

This equation means that if the values of n, T, and V are known 
for a particular substance, then the pressure has a fixed value. 
Each substance is described by its own equation of state, but 
the explicit form of the equation is known in only a few special 
cases. One very important example is the equation of state of a 
‘perfect gas’, which has the form p = nRT/V, where R is a con-
stant independent of the identity of the gas.

1A.2(a) The empirical basis of the perfect  
gas law
The equation of state of a perfect gas was established by com-
bining a series of empirical laws that arose from experimental 
observations. These laws can be summarized as

 

Boyle s law
Charles s law

’
’
 : constant, at constant ,
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p T n V
Avoogadro s principle’  : constant , at constant ,V n p T� �

Boyle’s and Charles’s laws are strictly true only in the limit 
that the pressure goes to zero (p → 0): they are examples of a 
limiting law, a law that is strictly true only in a certain limit. 
However, these laws are found to be reasonably reliable at nor-
mal pressures (p ≈ 1 bar) and are used throughout chemistry. 
Avogadro’s principle is so-called because it supposes that the 
system consists of molecules whereas a law is strictly a sum-
mary of observations and independent of any assumed model.

Figure 1A.2 depicts the variation of the pressure of a sam-
ple of gas as the volume is changed. Each of the curves in the 
graph corresponds to a single temperature and hence is called 
an isotherm. According to Boyle’s law, the isotherms of gases 
are hyperbolas (curves obtained by plotting y against x with 
xy = constant, or y = constant/x). An alternative depiction, a  
plot of pressure against 1/volume, is shown in Fig. 1A.3; in 
such a plot the isotherms are straight lines because p is pro-
portional to 1/V. Note that all the lines extrapolate to the point 
p V= =0 1 0, /  but have slopes that depend on the temperature.

The linear variation of volume with temperature summa-
rized by Charles’s law is illustrated in Fig. 1A.4. The lines in this 

Answer: 1391013710
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bar or atm

Example 1A.1 Specifying the variables of state

When released into a certain vessel, 0.560 mg of nitrogen gas 
is observed to exert a pressure of 10.4 Torr at a temperature of 
25.2 °C. Express the pressure in pascals (Pa) and the thermo-
dynamic temperature in kelvins (K). Also calculate the amount 
of N2, and the number of N2 molecules present. Take the molar 
mass of N2 as 14.01 g mol−1.

Collect your thoughts The SI unit of pressure is Pa, and the 
conversion from Torr to Pa is given in Table 1A.1; the conver-
sion of °C to K is given by eqn 1A.1. The amount is computed 
using eqn 1A.2.

The solution From the table 1 Torr = 133.32 … Pa, so a pressure 
of 10.4 Torr is converted to Pa through

 p � � � � ��( . ) ( . ) .10 4 133 32 1 39 101 3Torr Pa Torr Pa  
Note the inclusion of units for each quantity, and the way in 
which the units cancel to give the required result. The tempera-
ture in °C is converted to K using eqn 1A.1.

 T /K / C C / C� � � � � � � �� 273 15 25 2 273 15 298. ( . ) .  
Thus T = 298 K. The amount is calculated by using eqn 1A.2: 
note the conversion of the mass from mg to g so as to match 
the units of the molar mass.
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Here the intermediate result is truncated at (not rounded to) 
three figures, but the final result is rounded to three figures.

The number of molecules is found by multiplying the 
amount by Avogadro’s constant.

 
N nN� � �� � �
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A mol mol( . ) ( . )

.
3 99 10 6 0221 10

2 41 10

5 23 1

19

The result, being a pure number, is dimensionless.

Self-test 1A.1 Express the pressure in bar and in atm.

Exercises
E1A.1 Express (i) 108 kPa in torr and (ii) 0.975 bar in atmospheres.

E1A.2 What mass of methanol (molar mass 32.04 g mol−1) contains the same 
number of molecules as 1.00 g of ethanol (molar mass 46.07 g mol−1)?
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illustration are examples of isobars, or lines showing the varia-
tion of properties at constant pressure. All these isobars extrap-
olate to the point V T= =0 0,  and have slopes that depend on 
the pressure. Figure 1A.5 illustrates the linear variation of pres-
sure with temperature. The lines in this diagram are isochores, 
or lines showing the variation of properties at constant volume, 
and they all extrapolate to p T= =0 0, .

The empirical observations summarized by Boyle’s and 
Charles’s laws and Avogadro’s principle can be combined into 
a single expression:

pV nT� �constant

This expression is consistent with Boyle’s law, pV = constant 
when n and T are constant. It is also consistent with both 
forms of Charles’s law: p T∝  when n and V are held constant, 
and V T∝  when n and p are held constant. The expression 
also agrees with Avogadro’s principle, V n∝  when p and T 
are constant. The constant of proportionality, which is found 

 experimentally to be the same for all gases, is denoted R and 
called the (molar) gas constant. The resulting expression

 pV nRT= Perfect gas law (1A.4)

is the perfect gas law (or perfect gas equation of state). A gas 
that obeys this law exactly under all conditions is called a 
 perfect gas (or ideal gas). Although the term ‘ideal gas’ is used 
widely, in this text we prefer to use ‘perfect gas’ because there is 
an important and useful distinction between ideal and perfect. 
The distinction is that in an ‘ideal system’ all the interactions 
between molecules are the same; in a ‘perfect system’, not only 
are they the same but they are also zero.

For a real gas, any actual gas, the perfect gas law is approxi-
mate, but the approximation becomes better as the pressure 
of the gas approaches zero. In the limit that the pressure goes 
to zero, p → 0, the equation is exact. The value of the gas con-
stant R can be determined by evaluating R = pV/nT for a gas 
in the limit of zero pressure (to guarantee that it is behaving 

Figure 1A.2 The pressure-volume dependence of a fixed 
amount of gas that obeys Boyle’s law. Each curve is for a different 
temperature and is called an isotherm; each isotherm is a 
hyperbola (pV = constant).
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Figure 1A.3 Straight lines are obtained when the pressure of 
a gas obeying Boyle’s law is plotted against 1/V at constant 
temperature. These lines extrapolate to zero pressure at 1/V = 0.
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Figure 1A.4 The volume-temperature dependence of a fixed 
amount of gas that obeys Charles’s law. Each line is for a different 
pressure and is called an isobar. Each isobar is a straight line 
and extrapolates to zero volume at T = 0, corresponding to 
θ = −273.15 °C.
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Figure 1A.5 The pressure-temperature dependence of a fixed 
amount of gas that obeys Charles’s law. Each line is for a different 
volume and is called an isochore. Each isochore is a straight line 
and extrapolates to zero pressure at T = 0.
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 perfectly). As remarked in Energy: A first look, the modern pro-
cedure is to note that R = NAk, where k is Boltzmann’s constant 
and NA has its newly defined value, as indicated earlier.

The surface in Fig. 1A.6 is a plot of the pressure of a fixed 
amount of perfect gas molecules against its volume and ther-
modynamic temperature as given by eqn 1A.4. The surface 
depicts the only possible states of a perfect gas: the gas cannot 
exist in states that do not correspond to points on the surface. 
Figure 1A.7 shows how the graphs in Figs. 1A.2, 1A.4, and 1A.5 
correspond to sections through the surface.

The molecular explanation of Boyle’s law is that if a sample of 
gas is compressed to half its volume, then twice as many mol-
ecules strike the walls in a given period of time than before it 
was compressed. As a result, the average force exerted on the 
walls is doubled. Hence, when the volume is halved the pres-
sure of the gas is doubled, and pV is a constant. Boyle’s law ap-
plies to all gases regardless of their chemical identity (provided 
the pressure is low) because at low pressures the average sepa-
ration of molecules is so great that they exert no influence on 
one another and hence travel independently.

The molecular explanation of Charles’s law lies in the fact 
that raising the temperature of a gas increases the average speed 
of its molecules. The molecules collide with the walls more fre-
quently and with greater impact. Therefore they exert a greater 
pressure on the walls of the container. For a quantitative ac-
count of these relations, see Topic 1B.

1A.2(b) The value of the gas constant
If the pressure, volume, amount, and temperature are expressed 
in their SI units the gas constant R has units N m K−1 mol−1 which, 
because 1 J = 1 N m, can be expressed in terms of J K−1 mol−1. The 
currently accepted value of R is 8.3145 J K−1 mol−1. Other com-
binations of units for pressure and volume result in different 
values and units for the gas constant. Some commonly encoun-
tered combinations are given in Table 1A.2.

The perfect gas law is of the greatest importance in physical 
chemistry because it is used to derive a wide range of relations 

Figure 1A.6 A region of the p,V,T surface of a fixed amount of 
perfect gas molecules. The points forming the surface represent 
the only states of the gas that can exist.
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Figure 1A.7 Sections through the surface shown in Fig. 1A.6 at  
constant temperature give the isotherms shown in Fig. 1A.2. 
Sections at constant pressure give the isobars shown in Fig. 1A.4. 
Sections at constant volume give the isochores shown in Fig. 1A.5.

Volume, V

Temperature, T

Pr
es

su
re

, p

Volume, V

Vmeee, VVVVVoo

Isotherm

Isobar

Isochore

pV = constant

V ∝ T

p ∝ T Answer: 900 K

Example 1A.2 Using the perfect gas law

Nitrogen gas is introduced into a vessel of constant volume at a 
pressure of 100 atm and a temperature of 300 K. The tempera-
ture is then raised to 500 K. What pressure would the gas then 
exert, assuming that it behaved as a perfect gas?

Collect your thoughts The pressure is expected to be greater on 
account of the increase in temperature. The perfect gas law in 
the form pV/nT = R implies that if the conditions are changed 

from one set of values to another, then because pV/nT is equal 
to a constant, the two sets of values are related by the ‘combined 
gas law’

 p V
n T

p V
n T

1 1

1 1

2 2

2 2

= Combined gas law   (1A.5)

In this case the volume is the same before and after heating, so 
V1 = V2 and these terms cancel. Likewise the amount does not 
change upon heating, so n1 = n2 and these terms also cancel.

The solution Cancellation of the volumes and amounts on each 
side of the combined gas law results in

 
p
T

p
T

1

1

2

2

=
 

which can be rearranged into

 
p T

T
p2

2

1
1� �
 

Substitution of the data then gives

 
p2

500
300

100 167� � �
K
K

atm atm( )
 

Self-test 1A.2 What temperature would be needed for the same 
sample to exert a pressure of 300 atm?
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found throughout thermodynamics. It is also of considerable 
practical utility for calculating the properties of a perfect gas 
under a variety of conditions. For instance, the molar  volume, 
Vm = V/n, of a perfect gas under the conditions called  standard 
ambient temperature and pressure (SATP), defined as 
298.15 K and 1 bar, is calculated as 24.789 dm3 mol−1. An earlier 
definition, standard temperature and pressure (STP), was 0 °C 
and 1 atm; at STP, the molar volume of a perfect gas under these 
conditions is 22.414 dm3 mol−1.

1A.2(c) Mixtures of gases
When dealing with gaseous mixtures, it is often necessary to 
know the contribution that each component makes to the total 
pressure of the sample. The partial pressure, pJ, of a gas J in a 
mixture (any gas, not just a perfect gas), is defined as

 p x pJ J
 = Partial pressure 

[definition]  (1A.6)

where xJ is the mole fraction of the component J, the amount of 
J expressed as a fraction of the total amount of molecules, n, in 
the sample:

 x
n
n

n n nJ
J

A B        � � � � Mole fraction 
[definition]  (1A.7)

When no J molecules are present, xJ = 0; when only J molecules are 
present, xJ = 1. It follows from the definition of xJ that, whatever the 
composition of the mixture, x xA B� � � 1 and therefore that the 
sum of the partial pressures is equal to the total pressure:

 p p x x p pA B A B� � � � � � ( )  (1A.8)

This relation is true for both real and perfect gases.
When all the gases are perfect, the partial pressure as de-

fined in eqn 1A.6 is also the pressure that each gas would exert 
if it occupied the same container alone at the same tempera-
ture. The latter is the original meaning of ‘partial pressure’. 
That identification was the basis of the original formulation 
of Dalton’s law:

The pressure exerted by a mixture of gases is the sum of 
the pressures that each one would exert if it occupied the 
container alone.

This law is valid only for mixtures of perfect gases, so it is not 
used to define partial pressure. Partial pressure is defined by 
eqn 1A.6, which is valid for all gases.

Table 1A.2 The (molar) gas constant*

R

8.314 47 J K−1 mol−1

8.205 74 × 10−2 dm3 atm K−1 mol−1

8.314 47 × 10−2 dm3 bar K−1 mol−1

8.314 47 Pa m3 K−1 mol−1

62.364 dm3 Torr K−1 mol−1

1.987 21 cal K−1 mol−1

* The gas constant is now defined as R = NAk, where NA is Avogadro’s constant and k is 
Boltzmann’s constant.

Example 1A.3 Calculating partial pressures

The mass percentage composition of dry air at sea level is 
approximately N2: 75.5; O2: 23.2; Ar: 1.3. What is the partial 
pressure of each component when the total pressure is 1.20 atm?

Collect your thoughts Partial pressures are defined by eqn 1A.6. 
To use the equation, first calculate the mole fractions of the 
components by using eqn 1A.7 and the fact that the amount of 
atoms or molecules J of molar mass MJ in a sample of mass mJ is 
nJ = mJ/MJ. The mole fractions are independent of the total mass 
of the sample, so choose the latter to be exactly 100 g (which 
makes the conversion from mass percentages very straightfor-
ward). Thus, the mass of N2 present is 75.5 per cent of 100 g, 
which is 75.5 g.

The solution The amounts of each type of atom or molecule 
present in 100 g of air, in which the masses of N2, O2, and Ar 
are 75.5 g, 23.2 g, and 1.3 g, respectively, are

 

n

n
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.
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.

.
.

( )
.

.

N
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g mol
mol mol
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g

2 1

2

75 5
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�
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0 725
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1

1

g mol
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g

g mol
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�

� �

� �

.
.

.

( )
.
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.
.

n
995

0 033mol mol� .

The total is 3.45 mol. The mole fractions are obtained by divid-
ing each of the above amounts by 3.45 mol and the partial pres-
sures are then obtained by multiplying the mole fraction by the 
total pressure (1.20 atm):

N2 O2 Ar
Mole fraction: 0.780 0.210 0.0096
Partial pressure/atm: 0.936 0.252 0.012

Self-test 1A.3 When carbon dioxide is taken into account, the 
mass percentages are 75.52 (N2), 23.15 (O2), 1.28 (Ar), and 
0.046 (CO2). What are the partial pressures when the total 
pressure is 0.900 atm?

Answer: 0.703, 0.189, 0.0084, and 0.00027 atm

Exercises
E1A.3 Could 131 g of xenon gas in a vessel of volume 1.0 dm3 exert a pressure 
of 20 atm at 25 °C if it behaved as a perfect gas? If not, what pressure would  
it exert?

E1A.4 A perfect gas undergoes isothermal compression, which reduces its 
volume by 2.20 dm3. The final pressure and volume of the gas are 5.04 bar  
and 4.65 dm3, respectively. Calculate the original pressure of the gas in (i) bar, 
(ii) atm.

E1A.5 At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg m−3. 
What is the molecular formula of sulfur under these conditions?




